Skip to main content Accessibility help
×
  • Cited by 29
Publisher:
Cambridge University Press
Online publication date:
June 2013
Print publication year:
2013
Online ISBN:
9781139136990

Book description

In this book the author illustrates the power of the theory of subcartesian differential spaces for investigating spaces with singularities. Part I gives a detailed and comprehensive presentation of the theory of differential spaces, including integration of distributions on subcartesian spaces and the structure of stratified spaces. Part II presents an effective approach to the reduction of symmetries. Concrete applications covered in the text include reduction of symmetries of Hamiltonian systems, non-holonomically constrained systems, Dirac structures, and the commutation of quantization with reduction for a proper action of the symmetry group. With each application the author provides an introduction to the field in which relevant problems occur. This book will appeal to researchers and graduate students in mathematics and engineering.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Abraham, R. and J., Robbin (1967), Transversal Mappings and Flows, Academic Press, New York.
Aprodu, M. and J., Nagel (2010), Koszul Cohomology and Algebraic Geometry, University Lecture Series, vol. 52, American Mathematical Society, Providence, RI.
Arms, J.M. (1996), ‘Reduction of Poisson algebras at non-zero momentum values’, J. Geom. Phys. 21 81–95.
Arms, J.M., J.E., Marsden and V., Moncrief (1981), ‘Symmetry and bifurcations of momentum mappings’, Commun. Math. Phys. 78 455–478.
Arms, J.M., M., Gotay and G., Jennings (1990), ‘Geometric and algebraic reduction for singular momentum mappings’, Adv. Math. 79 43–103.
Arms, J.M., R., Cushman and M.J., Gotay (1991), ‘A universal reduction procedure for Hamiltonian group actions’. In The Geometry of Hamiltonian Systems, T., Ratiu (ed.), MSRI Publication 20, Springer, Berlin, pp. 33–51.
Aronszajn, N. (1967), ‘Subcartesian and subRiemannian spaces’, Not. Amer. Math. Soc., 14 111.
Auslander, L. and B., Kostant (1971), ‘Polarizations and unitary representations of solvable Lie groups’, Invent. Math. 14 255–354.
Bates, L. (2007), ‘A smooth invariant not a smooth function of polynomial invariants’, Proc. Amer. Math. Soc. 135 3039–3040.
Bates, L. and J., Śniatycki (1993), ‘Non-holonomic reduction’, Rep. Math. Phys. 32 99–115.
Bates, L., R., Cushman, M., Hamilton and J., Śniatycki (2009), ‘Quantization of singular reduction’, Rev. Math. Phys. 21 315–371.
Bierstone, E. (1975), ‘Lifting isotopies from orbit spaces’, Topology 14 245–252.
Bierstone, E. (1980), The structure of orbit spaces and the singularities of equivariant mappings, Monografias de Matemática, vol. 35, Instituto de Matemática Pura e Applicada, Rio de Janeiro.
Binz, E., J., Šniatycki and H., Fischer (2006), Geometry of Classical Fields, Dover Publications, Mineola, NY.
Blankenstein, G. (2000), Implicit Hamiltonian Systems: Symmetry and Interconnection, PhD thesis, University of Twente.
Blankenstein, G. and T., Ratiu (2004), ‘Singular reduction of implicit Hamiltonian systems’, Rep. Math. Phys. 53 211–260.
Blankenstein, G. and A.J., van der Schaft (2001), ‘Symmetry and reduction in implicit generalized Hamiltonian systems’, Rep. Math. Phys. 47 57–100.
Bleuler, K. (1950), ‘Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen’, Helv. Phys. Acta 23 567.
Buchner, K., M., Heller, P., Multarzyński and W., Sasin (1993), ‘Literature on differential spaces’, Acta Cosmol. 19 111–129.
Bursztyn, H., G.R., Cavalcanti and M., Gualtieri (2007), ‘Reduction of Courant algebroids and generalized complex structures’, Adv. Math. 211 726–765.
Cegiełka, K. (1974), ‘Existence of smooth partition of unity and of scalar product in a differential space’, Demonstratio Math. 6 493–504.
Courant, T.J. (1990), ‘Dirac manifolds’, Trans. Amer. Math. Soc. 319 631–661.
Courant, T. and A., Weinstein (1988), ‘Beyond Poisson structures’. In Seminaire Sud-Rhodanien de Geometrie VIII, Travaux en Cours 27, Hermann, Paris, pp. 39–49.
Cushman, R. (1983), ‘Reduction, Brouwer's Hamiltonian and the critical inclination’, Celest. Mech. 31 401–429.
Cushman, R.H. and L.M., Bates (1997), Global Aspects of Classical Integrable Systems, Birkhäuser, Basel.
Cushman, R. and J., Šniatycki (2001), ‘Differential structure of orbit spaces’, Canad. J. Math. 53 235–248.
Cushman, R., J.J., Duistermaat and J., Šniatycki (2010), Geometry of Nonholonomically Constrained Systems, World Scientific, Singapore.
Dirac, P.A.M. (1950), ‘Generalized Hamiltonian dynamics’, Canad. J. Math. 2 129–148.
Dirac, P.A.M. (1964), Lectures on Quantum Mechanics, Belfer Graduate School of Science Monograph Series, Yeshiva University, New York.
Dorfman, I. (1993), Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester.
Duistermaat, J.J. (2004), Lectures on dynamical systems with symmetry given at Utrecht Spring School on Lie Groups, unpublished.
Duistermaat, J.J. and J.A.C., Kolk (2000), Lie Groups, Springer, Berlin.
Duval, C., J., Elhadad, M.J., Gotay and G.M., Tuynman (1990), ‘Nonunimodularity and the quantization of pseudo-rigid body’. In Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, J., Harnad and J.E., Marsden (eds.), CRM, Montréal, pp. 149–160.
Duval, C., J., Elhadad, M.J., Gotay, J., Šniatycki and G.M., Tuynman (1991), ‘Quantization and bosonic BRST theory’, Ann. Phys. 206 1–26.
Epstein, M. and J., Šniatycki (2006), ‘Fractal mechanics’, Physica D 220 54–68.
Guillemin, V. and S., Sternberg (1982), ‘Geometric quantization and multiplicities of group representations’, Invent. Math. 67 515–538.
Guillemin, V. and S., Sternberg (1984), Symplectic Techniques in Physics, Cambridge University Press, Cambridge.
Gupta, S.N. (1950), ‘Theory of longitudinal photons in quantum electrodynamics’, Proc. Phys. Soc. A63 681.
Hall, B. and W., Kirwin (2007), ‘Unitarity in quantization commutes with reduction’, Commun. Math. Phys. 275(2) 401–422.
Huebschmann, J. (2006), ‘Kähler quantization and reduction’, J. Reine Angew. Math. 591 75–109.
Jotz, M. and T., Ratiu (2012), ‘Dirac structures, nonholonomic systems and reduction’, Rep. Math. Phys. 69 5–56.
Jotz, M., T., Ratiu and J., Šniatycki (2011), ‘Singular reduction of Dirac structures’, Trans. Amer. Math. Soc. 363 2967–3013.
Kelley, J.L. (1955), General Topology, Van Nostrand, New York (reprinted by Springer, New York, 1975).
Kimura, T. (1993), ‘Generalized classical BRST cohomology and reduction of Poisson manifolds’, Commun. Math. Phys. 151 155–182.
Kirillov, A.A. (1962), ‘Unitary representations of nilpotent Lie groups’, Russian Math. Surveys 17 53–104.
Kobayashi, S. and K., Nomizu (1963), Foundations of Differential Geometry, vol. 1, Wiley, New York.
Koon, W.S. and J.E., Marsden (1998), ‘The Poisson reduction of nonholonomic mechanical systems’, Rep. Math. Phys. 42 101–134.
Kostant, B. (1966), ‘Orbits, symplectic structures, and representation theory’. In Proceedings of US—Japan Seminar in Differential Geometry, Kyoto, 1965, Nippon Hyoronsha, Tokyo.
Kostant, B. (1970), ‘Quantization and unitary representations’. In Lectures in Modern Analysis and Applications III, R.M., Dudley, J., Feldman, B., Kostant, R.P., Lang-lands, E.M., Stein and C.T., Taam (eds.), Lecture Notes in Mathematics, vol. 170, Springer, Berlin, pp. 87–207.
Li, H. (2008), ‘Singular unitarity in “quantization commutes with reduction”’, J. Geom. Phys. 58 –742.
Libermann, P. and C.-M., Marle (1987), Symplectic Geometry and Analytical Mechanics (translated from French by B.E., Schwarzbach), Mathematics and Its Applications, vol. 35, Reidel, Dordrecht.
Lusala, T. and J., Śniatycki (2011), ‘Stratified subcartesian spaces’, Canad. Math. Bull. 54 693–705.
Lusala, T. and J., Śniatycki (to appear), ‘Slicet heorem for differentials paces and reduction by stages’, Demonstratio Math., in press.
Lusala, T., J., Śniatycki and J., Watts (2010), ‘Regular points of a subcartesian space’, Canad. Math. Bull. 53 340–346.
Marsden, J.E. and A., Weinstein (1974), ‘Reduction of s ymplectic manifolds with symmetry’, Rep. Math. Phys. 5 121–130.
Marsden, J.E., G., Misiołek, J.-P., Ortega, M., Perlmutter and T., Ratiu (2007), Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, vol. 1913, Springer, Berlin.
Marshall, C.D. (1975a), ‘Calculus on subcartesian spaces’, J. Differential Geom. 10 551–573.
Marshall, C.D. (1975b), ‘The de Rham cohomology on subcartesian spaces’, J. Differential Geom. 10 575–588.
Mather, J.N. (1973), ‘Stratifications and mappings’. In Dynamical Systems, M.M., Peixoto (ed.), Academic Press, New York, pp. 195–232.
Meyer, K.R. (1973), ‘Symmetries and integrals in mechanics’. In Dynamical Systems, M.M., Peixoto (ed.), Academic Press, New York, pp. 259–273.
Noether, E. (1918), ‘Invariante Variationsprobleme’, Kgl. Ges. Wiss. Nachr. Göttingen Math. Physik 2 235–257.
Ortega, J.-P. and T.S., Ratiu (2002), ‘The optimal momentum map’. In Geometry, Mechanics and Dynamics: Volume in Honor of the 60th Birthday of J. E. Marsden, P., Newton, P., Holmes and A., Weinstein (eds.), Springer, Berlin, pp. 329–362.
Ortega, J.-P. and T.S., Ratiu (2004), Momentum Maps and Hamiltonian Reduction, Birkhäuser, Boston.
Palais, R. (1961), ‘On the existence of slices for actions of noncompact Lie groups’, Ann. of Math. 73 295–323.
Pasternak-Winiarski, Z. (1984), ‘On some diff erentials tructures defined by actions of groups’. In Proceedings of the Conference on Differential Geometry and Its Applications, Part 1 (Nove Mesto na Morave, 1983), Charles University, Prague, pp. 105–115.
Pflaum, M.J. (2001), Analytic and Geometric Study of Stratified Spaces, Springer, Berlin.
Pukanszky, L. (1971), ‘Unitary representations of solvable groups’, Ann. Sci. Ecole Normale Sup. 4 457–608.
Sasin, W. (1986), ‘On some exterior algebra of differential forms over a differential space’, Demonstratio Math. 19 1063–1075.
Satake, I. (1957), ‘The Gauss–Bonnet theorem for V-manifolds’, J. Math. Soc. Japan 9 464–492.
van der Schaft, A.J. and B.M., Maschke (1994), ‘On the Hamiltonian formulation of nonholonomic mechanical systems’, Rep. Math. Phys. 34 225–233.
Schwarz, G. (1975), ‘Smooth functions invariant under the action of compact Lie groups’, Topology 14 63–68.
Sikorski, R. (1967), ‘Abstract covariant derivative’, Colloq. Math. 18 252–272.
Sikorski, R. (1972), Wstȩp do Geometrii Różniczkowej, PWN, Warsaw.
Sjamaar, R. (1995), ‘Holomorphic slices, symplectic reduction and multiplicities of representations’, Ann. of Math. 141 87–129.
Śniatycki, J. (1980), Geometric Quantization and Quantum Mechanics, Applied Mathematical Science, vol. 30, Springer, New York.
Śniatycki, J. (1983), ‘Constraints and quantization’. In Non-Linear Partial Differential Operators and Quantization Procedures: Proceedings of a Workshop Held at Clausthal, Federal Republic of Germany, 1981, S., Andersson and H., Doebner (eds.), Lecture Notes in Mathematics, vol. 1037, Springer, Berlin, pp. 301–334.
Śniatycki, J. (2003a), ‘Integral curves of derivations on locally semi-algebraic differential spaces’. In Dynamical Systems and Differential Equations (Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24–27, 2002, Wilmington, NC, USA), W. Feng, S. Hu and X. Lu (eds.), American Institute of Mathematical Sciences Press, Springfield, MO, pp. 825–831.
Śniatycki, J. (2003b), ‘Orbits of families of vector fields on subcartesian spaces’, Ann. Inst. Fourier (Grenoble) 53 2257–2296.
Śniatycki, J. (2005), ‘Poisson algebras in reduction of symmetries’, Rep. Math. Phys. 56 53–73.
Śniatycki, J. (2011), ‘Reduction of symmetries of Dirac structures’, J. Fixed Point Theory Appl. 10 339–358.
Śniatycki, J. (2012), ‘Commutation of geometric quantization and algebraic reduction’. In Mathematical Aspects of Quantization: Center for Mathematics at Notre Dame: Summer School and Conference on Mathematical Aspects of Quantization, May 31– June 10, 2011, Notre Dame University, Notre Dame, Indiana, S., Evens, M., Gekhman, B.C., Hall, X., Liu, C., Paulini (eds.), Contemporary Mathematics, vol. 583, American Mathematical Society, Providence, R.I., pp. 295–308.
Śniatycki, J. and A., Weinstein (1983), ‘Reduction and quantization for singular momentum mappings’, Lett. Math. Phys. 7 155–161.
Souriau, J.-M. (1966), ‘Quantification géométrique’, Commun. Math. Phys. 1 374–398.
Stefan, P. (1974), ‘Accessible sets, orbits and foliations with singularities’, Proc. London Math. Soc. 29 699–713.
Sussmann, H. (1973), ‘Orbits of families of vector fields and integrability of distributions’, Trans. A mer. Math. Soc. 180 171–188.
Thom, R. (19551956), ‘La stabilité topologique des applications différentiables’, Ann. Inst. Fourier (Grenoble) 6 43–87.
Walczak, P. (1973), ‘At heorem on diffeomorphisms in the category of differential spaces’, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 21 325–329.
Warner, F. (1971), Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company, Glenview, IL.
Watts, J. (2006), The Calculus on Subcartesian Spaces, MSc thesis, Department of Mathematics, University of Calgary.
Watts, J. (2012), Diffeologies, Differential Spaces, and Symplectic Geometry, PhD thesis, Department of Mathematics, University of Toronto.
Ważewski, T. (1934), ‘Sur un problème de caractère intègral relatif a l'équation ∂z/∂x + Q (x, y)∂z/∂y = 0’, Mathematica 8 103–116.
Weyl, H. (1946), The Classical Groups, second edition, Princeton University Press, Princeton, NJ.
Whitney, H. (1955), ‘On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane’, Ann. of Math. 62 374–410.
Wilbour, D.C. (1993), Poisson Algebras and Singular Reduction of Constrained Hamiltonian Systems, PhD thesis, University of Washington.
Woodhouse, N.M.J. (1992), Geometric Quantization, second edition, Clarendon Press, Oxford.
Yoshimura, H. and J. E., Marsden (2007), ‘Reduction of Dirac structures and Hamilton-Pontryagin principle’, Rep. Math. Phys. 60 381–426.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.