Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-29T01:22:03.180Z Has data issue: false hasContentIssue false

Chapter 4 - Postoperative Cognitive Improvement

from Section 1 - Cognitive Function in Perioperative Care

Published online by Cambridge University Press:  11 April 2019

Roderic G. Eckenhoff
Affiliation:
University of Pennsylvania
Niccolò Terrando
Affiliation:
Duke University, North Carolina
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballard, C., Jones, E., Gauge, N., Aarsland, D., Nilsen, O. B., Saxby, B. K., Lowery, D., Corbett, A., Wesness, K., Katsaiti, E., Arden, J., Amaoko, D., Prophet, N., Purushothaman, B., & Green, D. (2012). Optimised anaesthesia to reduce post-operative cognitive decline (POCD) in older patients undergoing elective surgery, a randomised controlled trial. PLoS One, 7(6), e37410.CrossRefGoogle ScholarPubMed
Culley, D. J., Flaherty, D., Fahey, M. C., Rudolph, J. L., Javedan, H., Huang, C. C., Wright, J., Bader, A. M., Hyman, B. T., Blacker, D., & Crosby, G. (2017). Poor performance on a preoperative cognitive screening test predicts postoperative complications in older orthopedic surgical patients. Anesthesiology, 124, 312321.Google Scholar
Monk, T. G., Weldon, B. C., Garvan, C. W., Dede, D. E., Van Der Aa, M. T., Heilman, K. M., & Gravenstein, J. S. (2008). Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology, 108(1), 1830.Google Scholar
Newman, S., Stygall, J., Hirani, S., Shaefi, S., & Maze, M. (2007). Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology, 106(3), 572590.Google Scholar
Engel, G. L. (1977). The need for a new medical model: a challenge for biomedicine. Science, 196(4286), 129136.CrossRefGoogle Scholar
Jones-Gotman, M., Harnadek, M. C., & Kubu, C. S. (2000). Neuropsychological assessment for temporal lobe epilepsy surgery. Canadian Journal of Neurological Sciences, 27(S1), S39S43.Google Scholar
Moberg, P. J., & Rick, J. H. (2008). Decision-making capacity and competency in the elderly: a clinical and neuropsychological perspective. NeuroRehabilitation, 23(5), 403413.Google Scholar
Maestu, F., Martin, P., Gil-Nagel, A., Franch, O., & Sola, R. G. (2000). Evaluation of epilepsy surgery. Revista de neurologia, 30(5), 477482.Google Scholar
Kilpatrick, C., Cook, M., Kaye, A., Murphy, M., & Matkovic, Z. (1997). Non-invasive investigations successfully select patients for temporal lobe surgery. Journal of Neurology, Neurosurgery, and Psychiatry, 63(3), 327333.Google Scholar
Sherman, E., Wiebe, S., Fay‐McClymont, T. B., Tellez‐Zenteno, J., Metcalfe, A., Hernandez‐Ronquillo, L., Hader, W. J., & Jetté, N. (2011). Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia, 52(5), 857869.Google Scholar
Nakhutina, L., Pramataris, P., Morrison, C., Devinsky, O., & Barr, W. B. (2010). Reliable change indices and regression-based measures for the Rey-Osterreith Complex Figure test in partial epilepsy patients. The Clinical Neuropsychologist, 24(1), 3844.Google Scholar
Helmstaedter, C., & Witt, J. A. (2017). How neuropsychology can improve the care of individual patients with epilepsy: looking back and into the future. Seizure, 44, 113120.Google Scholar
Wilson, S. J., Baxendale, S., Barr, W., Hamed, S., Langfitt, J., Samson, S., Watanabe, M., Baker, G. A., Hemstaedter, C., Hermann, B. P., & Smith, M. L. (2015). Indications and expectations for neuropsychological assessment in routine epilepsy care: report of the ILAE Neuropsychology Task Force, Diagnostic Methods Commission, 2013–2017. Epilepsia, 56(5), 674681.Google Scholar
Helmstaedter, C., Kurthen, M., Lux, S., Reuber, M., & Elger, C. E. (2003). Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Annals of Neurology, 54(4), 425432.Google Scholar
Head, D., Buckner, R. L., Shimony, J. S., Williams, L. E., Akbudak, E., Conturo, T. E., McAvoy, M., Morris, J. C., & Snyder, A. Z. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cerebral Cortex, 14(4), 410423.Google Scholar
Scahill, R. I., Frost, C., Jenkins, R., Whitwell, J. L., Rossor, M. N., & Fox, N. C. (2003). A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Archives of Neurology, 60(7), 989994.Google Scholar
Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364375.Google Scholar
Lee, T., Yip, J. T., & Jones‐Gotman, M. (2002). Memory deficits after resection from left or right anterior temporal lobe in humans: a meta‐analytic review. Epilepsia, 43(3), 283291.Google Scholar
Potter, J. L., Schefft, B. K., Beebe, D. W., Howe, S. R., Yeh, H. S., & Privitera, M. D. (2009). Presurgical neuropsychological testing predicts cognitive and seizure outcomes after anterior temporal lobectomy. Epilepsy & Behavior, 16(2), 246253.Google Scholar
Stroup, E., Langfitt, J., Berg, M., McDermott, M., Pilcher, W. M. D. P., & Como, P. (2003). Predicting verbal memory decline following anterior temporal lobectomy (ATL). Neurology, 60(8), 12661273.CrossRefGoogle ScholarPubMed
Liimatainen, J., Peräkylä, J., Järvelä, K., Sisto, T., Yli-Hankala, A., & Hartikainen, K. M. (2016). Improved cognitive flexibility after aortic valve replacement surgery. Interactive Cardiovascular and Thoracic Surgery, 23(4), 630636.Google Scholar
Knipp, S. C., Weimar, C., Schlamann, M., Schweter, S., Wendt, D., Thielmann, M., Benedik, J., & Jakob, H. (2017). Early and long-term cognitive outcome after conventional cardiac valve surgery. Interactive Cardiovascular and Thoracic Surgery, 24(4), 534540.Google Scholar
Thiara, G., Cigliobianco, M., Muravsky, A., Paoli, R. A., Mansur, R., Hawa, R., McIntyre, R.S., & Sockalingam, S. (2017). Evidence for neurocognitive improvement after bariatric surgery: a systematic review. Psychosomatics, 58(3), 217227.Google Scholar
Handley, J. D., Williams, D. M., Caplin, S., Stephens, J. W., & Barry, J. (2016). Changes in cognitive function following bariatric surgery: a systematic review. Obesity Surgery, 26(10), 25302537.Google Scholar
Kaya, Y., Ozturkeri, O. A., Benli, U. S., & Colak, T. (2013). Evaluation of the cognitive functions in patients with chronic renal failure before and after renal transplantation. Acta Neurologica Belgica, 113(2), 147155.Google Scholar
Joshee, P., Wood, A. G., Wood, E. R., & Grunfeld, E. A. (2017). Meta-analysis of cognitive functioning in patients following kidney transplantation. Nephrology Dialysis Transplantation, 33, 12681277.CrossRefGoogle Scholar
Santa Mina, D., Clarke, H., Ritvo, P., Leung, Y. W., Matthew, A. G., Katz, J., Trachtenberg, J., & Alibhai, S. M. H. (2014). Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy, 100(3), 196207.Google Scholar
Wallis, J. A., & Taylor, N. F. (2011). Pre-operative interventions (non-surgical and non-pharmacological) for patients with hip or knee osteoarthritis awaiting joint replacement surgery–a systematic review and meta-analysis. Osteoarthritis and Cartilage, 19(12), 13811395.Google Scholar
Topp, R., Swank, A. M., Quesada, P. M., Nyland, J., & Malkani, A. (2009). The effect of prehabilitation exercise on strength and functioning after total knee arthroplasty. Physical Medicine and Rehabilitation, 1(8), 729735.Google Scholar
Carli, F., Brown, R., & Kennepohl, S. (2012). Prehabilitation to enhance postoperative recovery for an octogenarian following robotic-assisted hysterectomy with endometrial cancer. Canadian Journal of Anaesthesia/Journal canadien d’anesthesie, 59, 779784.Google Scholar
Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Systematic Reviews, 3(3), CD005831.Google Scholar
Desjardins-Crépeau, L., Berryman, N., Fraser, S. A., Vu, T., Kergoat, M. J., Li, K., Bosquet, L., & Bherer, L. (2016). Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clinical Interventions in Aging, 11, 1287.Google Scholar
Barber, P. A., Hach, S., Tippett, L. J., Ross, L., Merry, A. F., & Milsom, P. (2008). Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke, 39(5), 14271433.Google Scholar
Browndyke, J. N., Berger, M., Harshbarger, T. B., Smith, P. J., White, W., Bisanar, T. L., Alexander, J. H., Gaca, J. G., Welsh-Bohmer, K., Newman, M. F., & Mathew, J. P. (2017). Resting‐state functional connectivity and cognition after major cardiac surgery in older adults without preoperative cognitive impairment: preliminary findings. Journal of the American Geriatrics Society, 65(1), 612.Google Scholar
Ghoneim, M. M., & O’Hara, M. W. (2016). Depression and postoperative complications: an overview. BMC Surgery, 16(1), 5.Google Scholar
Price, C. C., Tanner, J. J., Schmalfuss, I., Garvan, C. W., Gearen, P., Dickey, D., Heilman, K., McDonagh, D. L., Libon, D. J., Leonard, C., Bowers, D., & Monk, T. (2014). A pilot study evaluating presurgery neuroanatomical biomarkers for postoperative cognitive decline after total knee arthroplasty in older adults. Journal of the American Society of Anesthesiologists, 120(3), 601613.Google Scholar
Huang, H., Tanner, J., Parvataneni, H., Rice, M., Horgas, A., Ding, M., & Price, C. (2018). Impact of total knee arthroplasty with general anesthesia on brain networks: cognitive efficiency and ventricular volume predict functional connectivity decline in older adults. Journal of Alzheimer’s Disease, 62(1), 319333.Google Scholar
Hawkins, M. A., Alosco, M. L., Spitznagel, M. B., Strain, G., Devlin, M., Cohen, R., Crosby, R., Mitchell, J., & Gunstad, J. (2015). The association between reduced inflammation and cognitive gains after bariatric surgery. Psychosomatic Medicine, 77(6), 688.Google Scholar
Veronese, N., Facchini, S., Stubbs, B., Luchini, C., Solmi, M., Manzato, E., Sergi, G., Maggi, S., Cosco, T., & Fontana, L. (2017). Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 72, 8794.Google Scholar
Van Sandwijk, M. S., Ten Berge, I. J., Majoie, C. B., Caan, M. W., De Sonneville, L. M., Van Gool, W. A., & Bemelman, F. J. (2016). Cognitive changes in chronic kidney disease and after transplantation. Transplantation, 100(4), 734742.Google Scholar
Berger, M., Nadler, J., Browndyke, J., Posunammy, V., Cohen, H. J., Whitson, H. E., & Mathew, J. P. (2015). Postoperative cognitive dysfunction: minding the gaps in our knowledge of a common postoperative complication in the elderly. Anesthesiology Clinics, 33(3), 517.CrossRefGoogle ScholarPubMed
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology, 7(3), 273.Google Scholar
Engel, G. L. (1980). The clinical application of the biopsychosocial model. American Journal of Psychiatry, 137(5), 535544.Google Scholar
Lutgendorf, S. K., Cole, S., Costanzo, E., Bradley, S., Coffin, J., Jabbari, S., Rainwater, K., Ritchie, J. M., Yang, M., & Sood, A. K. (2003). Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clinical Cancer Research, 9(12), 45144521.Google Scholar
Guillemin, M., & Barnard, E. (2015). George Libman Engel: the biopsychosocial model and the construction of medical practice. In The Palgrave Handbook of Social Theory in Health, Illness and Medicine (pp. 236250). London: Palgrave Macmillan UK.Google Scholar
Sadler, J. Z., & Hulgus, Y. F. (1992). Clinical problem solving and the biopsychosocial model. American Journal of Psychiatry, 149(10), 13151323.Google ScholarPubMed
Santor, D. A., Messervey, D., & Kusumakar, V. (2000). Measuring peer pressure, popularity, and conformity in adolescent boys and girls: predicting school performance, sexual attitudes, and substance abuse. Journal of Youth and Adolescence, 29(2), 163182.Google Scholar
Buckner, J. D., Heimberg, R. G., Ecker, A. H., & Vinci, C. (2013). A biopsychosocial model of social anxiety and substance use. Depression and Anxiety, 30(3), 276284.CrossRefGoogle ScholarPubMed
Hendershot, C. S., Witkiewitz, K., George, W. H., & Marlatt, A. (2011). Relapse prevention for addictive behaviors. Substance Abuse Treatment, Prevention, and Policy, 6(1), 17.CrossRefGoogle ScholarPubMed
Segal, L., Leach, M. J., May, E., & Turnbull, C. (2013). Regional primary care team to deliver best-practice diabetes care. Diabetes Care, 36(7), 18981907.CrossRefGoogle Scholar
Hilliard, M. E., Powell, P. W., & Anderson, B. J. (2016). Evidence-based behavioral interventions to promote diabetes management in children, adolescents, and families. American Psychologist, 71(7), 590.Google Scholar
Ghaffary, S., Talasaz, A. H., Ghaeli, P., Karimi, A., Salehiomran, A., Hajighasemi, A., Bina, P., Darabi, S., Jalali, A., Dianatkhah, M., Noroozian, M., & Noroozian, M. (2015). Association between perioperative parameters and cognitive impairment in post-cardiac surgery patients. Journal of Tehran University Heart Center, 10(2), 85.Google Scholar
Le Manach, Y., Esteves, C. I., Bertrand, M., Goarin, J. P., Fléron, M. H., Coriat, P., Koskas, F., Riou, B., & Landais, P. (2011). Impact of preoperative statin therapy on adverse postoperative outcomes in patients undergoing vascular surgery. Anesthesiology, 114(1), 98104.Google Scholar
Katznelson, R., Djaiani, G. N., Borger, M. A., Friedman, Z., Abbey, S. E., Fedorko, L., Karski, J., Mitsaskakis, N., Caroll, J., & Beattie, W. S. (2009). Preoperative use of statins is associated with reduced early delirium rates after cardiac surgery. Journal of the American Society of Anesthesiologists, 110(1), 6773.Google Scholar
Fontes, M. T., Swift, R. C., Phillips-Bute, B., Podgoreanu, M. V., Stafford-Smith, M., Newman, M. F., & Mathew, J. P. (2013). Predictors of cognitive recovery after cardiac surgery. Anesthesia & Analgesia, 116(2), 435.Google Scholar
Madden, D. J., Bennett, I. J., & Song, A. W. (2009). Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychology Review, 19(4), 415.Google Scholar
Charlton, R. A., Barrick, T. R., McIntyre, D. J., Shen, Y., O’Sullivan, M., Howe, F. A., Clark, C. A., Morris, R. G., & Markus, H. S. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66(2), 217222.CrossRefGoogle ScholarPubMed
Brickman, A. M., Provenzano, F. A., Muraskin, J., Manly, J. J., Blum, S., Apa, Z., Stern, Y., Brown, T., Luchsinger, J., & Mayeux, R. (2012). Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Archives of Neurology, 69(12), 16211627.CrossRefGoogle Scholar
Price, C. C., Tanner, J., Nguyen, P. T., Schwab, N. A., Mitchell, S., Slonena, E., Brumback, B., Okun, M., Mareci, T. H., & Bowers, D. (2016). Gray and white matter contributions to cognitive frontostriatal deficits in non-demented Parkinson’s disease. PLoS One, 11(1), e0147332.CrossRefGoogle ScholarPubMed
Storandt, M., Mintun, M. A., Head, D., & Morris, J. C. (2009). Cognitive decline and brain volume loss as signatures of cerebral amyloid-β peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Aβ deposition. Archives of Neurology, 66(12), 14761481.Google Scholar
Sato, Y., Ito, K., Ogasawara, K., Sasaki, M., Kudo, K., Murakami, T., Nanba, T., Nishimoto, H., Yoshida, K., Kobayashi, M., Kuno, Y., Mase, T., & Ogawa, A. (2013). Postoperative increase in cerebral white matter fractional anisotropy on diffusion tensor magnetic resonance imaging is associated with cognitive improvement after uncomplicated carotid endarterectomy: tract-based spatial statistics analysis. Neurosurgery, 73(4), 592599.Google Scholar
Kant, I. M., de Bresser, J., van Montfort, S. J., Slooter, A. J., & Hendrikse, J. (2017). MRI markers of neurodegenerative and neurovascular changes in relation to postoperative delirium and postoperative cognitive decline. American Journal of Geriatric Psychiatry, 25(10), 10481061.Google Scholar
Yoshida, K., Ogasawara, K., Saura, H., Saito, H., Kobayashi, M., Yoshida, K., Terazaki, K., Fujiwara, S., & Ogawa, A. (2015). Post-carotid endarterectomy changes in cerebral glucose metabolism on 18F-fluorodeoxyglucose positron emission tomography associated with postoperative improvement or impairment in cognitive function. Journal of Neurosurgery, 123(6), 15461554.Google Scholar
Kao-Li, H. L., Lin, M. S., Wu, W. C., Tseng, W. Y. I., Su, M. Y., Chen, Y. F., Chiu, M., Wang, S.-Y., Yang, W., Tzen, K., & Wu, Y. W. (2015). Improvement of cerebral glucose metabolism in symptomatic patients with carotid artery stenosis after stenting. Clinical Nuclear Medicine, 40(9), 701707.Google Scholar
Raj, D., Yin, Z., Breur, M., Doorduin, J., Holtman, I. R., Olah, M., Mantingh-Otter, L., Van Dam, D., De Deyn, P., den Dunnen, W., Eggen, B. J., Amor, S., & Boddeke, E. (2017). Increased white matter inflammation in aging-and Alzheimer’s disease brain. Frontiers in Molecular Neuroscience, 10, 206.Google Scholar
Rydbirk, R., Elfving, B., Andersen, M. D., Langbøl, M. A., Folke, J., Winge, K., Pakkenberg, B., Brudek, T., & Aznar, S. (2017). Cytokine profiling in the prefrontal cortex of Parkinson’s disease and multiple system atrophy patients. Neurobiology of Disease, 106, 269278.Google Scholar
Moreno-Navarrete, J. M., Blasco, G., Puig, J., Biarnés, C., Rivero, M., Gich, J., Fernandez-Aranda, F., Garre-Olmo, J., Ramio-Torrenta, L., Alberich-Bayarri, A., & García-Castro, F. (2017). Neuroinflammation in obesity: circulating lipopolysaccharide-binding protein associates with brain structure and cognitive performance. International Journal of Obesity, 41(11), 16271635.Google Scholar
Ziebell, J. M., & Morganti-Kossmann, M. C. (2010). Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics, 7(1), 2230.Google Scholar
Li, Y.-C., Xi, C.-H., An, Y.-F., Dong, W.-H., & Zhou, M. (2012). Perioperative inflammatory response and protein S‐100β concentrations – relationship with post‐operative cognitive dysfunction in elderly patients. Acta Anaesthesiologica Scandinavica, 56(5), 595600.Google Scholar
Peng, L., Xu, L., & Ouyang, W. (2013). Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One, 8(11), e79624.Google Scholar
Baker, K. S., Gibson, S., Georgiou-Karistianis, N., Roth, R. M., & Giummarra, M. J. (2016). Everyday executive functioning in chronic pain: specific deficits in working memory and emotion control, predicted by mood, medications, and pain interference. Clinical Journal of Pain, 32(8), 673680.Google Scholar
Vaurio, L. E., Sands, L. P., Wang, Y., Mullen, E. A., & Leung, J. M. (2006). Postoperative delirium: the importance of pain and pain management. Anesthesia & Analgesia, 102(4), 12671273.Google Scholar
Nimmo, S. M., Foo, I. T., & Paterson, H. M. (2017). Enhanced recovery after surgery: pain management. Journal of Surgical Oncology, 116(5), 583591.Google Scholar
Tully, P. J., Baker, R. A., Winefield, H. R., & Turnbull, D. A. (2010). Depression, anxiety disorders, and Type D personality as risk factors for delirium after cardiac surgery. Australian and New Zealand Journal of Psychiatry, 44(11), 10051011.Google Scholar
Patron, E., Benvenuti, S. M., Zanatta, P., Polesel, E., & Palomba, D. (2013). Preexisting depressive symptoms are associated with long-term cognitive decline in patients after cardiac surgery. General Hospital Psychiatry, 35(5), 472479.Google Scholar
Hudetz, J. A., Hoffmann, R. G., Patterson, K. M., Byrne, A. J., Iqbal, Z., Gandhi, S. D., Warltier, D. C., & Pagel, P. S. (2010). Preoperative dispositional optimism correlates with a reduced incidence of postoperative delirium and recovery of postoperative cognitive function in cardiac surgical patients. Journal of Cardiothoracic and Vascular Anesthesia, 24(4), 560567.Google Scholar
Hudetz, A. G. (2012). General anesthesia and human brain connectivity. Brain Connectivity, 2(6), 291302.Google Scholar
Gillis, C., Nguyen, T. H., Liberman, A. S., & Carli, F. (2015). Nutrition adequacy in enhanced recovery after surgery: a single academic center experience. Nutrition in Clinical Practice, 30(3), 414419.Google Scholar
Carli, F., & Zavorsky, G. S. (2005). Optimizing functional exercise capacity in the elderly surgical population. Current Opinion in Clinical Nutrition & Metabolic Care, 8(1), 2332.Google Scholar
National Alliance for Caregiving (NAC) & American Association for Retired Persons (AARP) Public Policy Institute. (2015). Caregiving in the United States. Available at: https://www.aarp.org/content/dam/aarp/ppi/2015/caregiving-in-the-united-states-2015-report-revised.pdfGoogle Scholar
Torres, J., Carvalho, D., Molinos, E., Vales, C., Ferreira, A., Dias, C. C., Araujo, R., & Gomes, E. (2017). The impact of the patient post-intensive care syndrome components upon caregiver burden. Medicina Intensiva, 8, 454460.Google Scholar
Miller, E. T. (2002). Targeting interventions for primary informal caregivers of adults with cognitive and physical losses. Rehabilitation Nursing, 27(2), 4651.Google Scholar
Setacci, C., Sirignano, A., Ricci, G., Spagnolo, A. G., Pugliese, F., & Speziale, F. (2015). A new ethical and medico-legal issue: vascular surgery and the postoperative cognitive dysfunction. Journal of Cardiovascular Surgery (Torino), 56(4), 607615.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×