Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T07:18:00.331Z Has data issue: false hasContentIssue false

5 - Formulations of Radiative, Chemical, and Aerosol Rates

Published online by Cambridge University Press:  15 May 2017

Guy P. Brasseur
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Daniel J. Jacob
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, P. J. and Seinfeld, J. H. (2002) Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107, 4370, doi:10.1029/2001JD001010.CrossRefGoogle Scholar
Brasseur, G. P. and Solomon, S. (2005) Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd edition, Springer, New York.Google Scholar
Chabrillat, S. and Kockarts, G. (1997) Simple parameterization of the absorption of the solar Lyman-α line, Geophys. Res. Lett., 24 (21), 26592662, doi: 10.1029/97GL52690, correction: Geophys. Res. Lett. 25 (1), 79, doi: 10.1029/97GL03569.Google Scholar
Chandrasekhar, S. (1950) Radiative Transfer, Oxford University Press, Oxford (Reprinted by Dover Publications, 1960).Google Scholar
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N. (2006) Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40, 26352643.Google Scholar
Elsasser, W. M. (1938) Mean absorption and equivalent absorption coefficient of a band spectrum, Phys. Rev., 54, 126129.Google Scholar
Fang, T. M., Wofsy, S. C., and Dalgarno, A. (1974) Capacity distribution functions and absorption in Schumann–Runge bands of molecular oxygen, Planet Space Sci., 22, 413425.Google Scholar
Friedlander, S. K. (1977) Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley, New York.Google Scholar
Fu, Q. and Liou, K. N. (1992) On the correlated k-distribution method for radiative transfer in nonhomogeneous atmosphere, J. Atmos. Sci., 49, 21392156.Google Scholar
Gelbard, F., Tambour, Y., and Seinfeld, J. J. (1980) Sectional representation for simulating aerosol dynamics, J. Colloid Interface Sci., 76, 357375.CrossRefGoogle Scholar
Gijs, A., Koppers, A., and Murtagh, D. P. (1997) Model studies of the influence of O2 photodissociation parameterizations in the Schumann–Runge bands on ozone related photolysis in the upper atmosphere, Ann. Geophys., 14, 6879.Google Scholar
Goody, R. M. (1952) A statistical model for water vapor absorption, Quart. J. Roy. Met. Soc., 78, 165169.Google Scholar
Goody, R. (1995) Principles of Atmospheric Physics and Chemistry, Oxford University Press, Oxford.Google Scholar
Goody, R., West, R., Chen, L., and Crisp, D. (1989) The correlated-k method for radiation calculations in nonhomogeneous atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 42, 539550.Google Scholar
Heintzenberg, J., Raes, F., and Schwartz, S. E. (2003) Tropospheric aerosols. In Atmospheric Chemistry in a Changing World (Brasseur, G. P., Prinn, R. G., and Pszenny, A. P., eds), Springer, New York.Google Scholar
Jacob, D. J. (1986) The chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91, 98079826.Google Scholar
Jacob, D. J. (2000) Heterogeneous chemistry and tropospheric ozone. Atmos. Environ., 34, 21312159.Google Scholar
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A. (1976) The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 24522459.Google Scholar
Kockarts, G. (1994) Penetration of solar radiation in the Schumann–Range bands of molecular oxygen: A robust approximation, Ann. Geophys., 12 (12), 12071217, doi: 10.1007/BF03191317.Google Scholar
Lenoble, J. (1977) Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere, Vol. I, International Association of Meteorology and Atmospheric Physics (IAMAP), Boulder, CO.Google Scholar
Liou, K. N. (2002) An Introduction to Atmospheric Radiation, Vol. 84, 2nd edition Academic Press, New York.Google Scholar
López-Puertas, M. and Taylor, F. W. (2001) Non-LTE Radiative Transfer in the Atmosphere, World Scientific Publishing, Singapore.Google Scholar
Lorenz, L. V. (1890) Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle, Det Kongelige Danske Videnskabernes Selskabs Skrifter, 1, 162.Google Scholar
Martin, R.V., Jacob, D.J., Yantosca, R.M., Chin, M., and Ginoux, P. (2003) Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res., 108, 4097.Google Scholar
Martin, S. T. (2000) Phase transitions of aqueous atmospheric particles, Chem. Rev., 100, 34033453.Google Scholar
Mie, G. (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., 330, 377445.Google Scholar
Minschwaner, K. and Siskind, D. E. (1993) A new calculation of nitric oxide photolysis in the stratosphere, mesosphere, and lower atmosphere, J. Geophys. Res., 98 (111), 2040120412, doi: 10.1029/93JD02007.Google Scholar
Minschwaner, K., Salawitch, R. J., and McElory, M. B. (1993) Absorption of solar radiation by O2: Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2, J. Geophys. Res., 98, 1054310561, doi: 10.1029/93JD00223.Google Scholar
Petty, G. W. (2006) A First Course in Atmospheric Radiation, 2nd edition, Sundog Publications, Madison, WI.Google Scholar
Rayleigh, L. (1871) On the light from the sky, its polarization and colour, Phil. Mag., 41, 107120.Google Scholar
Santillana, M., Le Sager, P., Jacob, D. J., and Brenner, M. P. (2010) An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models, Atmos. Environ., 44, 44264431.Google Scholar
Schwartz, S. E. (1986) Mass transport considerations pertinent to aqueous-phase reactions of gases in liquid-water clouds. In Chemistry of Multiphase Atmospheric Systems (Jaeschke, W., ed.), Springer-Verlag, Berlin.Google Scholar
Schwartz, S. E. and Freiberg, J. E. (1981) Oxidation of SO2 in aqueous droplets: Mass-transport limitation in laboratory studies and the ambient atmosphere, Atmos. Environ., 15, 11291144.Google Scholar
Seigneur, C., Hudischewskj, A. B., Seinfeld, J. H., et al. (1986) Simulations of aerosol dynamics: A comparative review of mathematical models, Aerosol Sci. Technol., 5 (2), 205222.Google Scholar
Seinfeld, J. H. and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York.Google Scholar
Shaw, J. (1953) Solar radiation, Ohio J. Sci., 53, 258.Google Scholar
Smith, F. L. III and Smith, C. (1972) Numerical evaluation of Chapman’s grazing incidence integral Ch (X, χ), J. Geophys. Res., 77, 19, 35923597, doi: 10.1029/JA077i019p03592.Google Scholar
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayawerra, K. (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 25022509.Google Scholar
Stier, P. Feichter, J., Kinne, S., et al. (2005) The aerosol–climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 11251156.Google Scholar
Whitby, K. T. (1978) The physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135159.Google Scholar
Whitby, E. R. and McMurry, P. H. (1997) Modal aerosol dynamics modeling, Aerosol Sci.Technol., 27, 673688.Google Scholar
Whitby, E. R., McMurry, P. H., Shankar, U., and Binkowski, F. S. (1991) Modal Aerosol Dynamics Modeling, Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC.Google Scholar
Woods, T. N., Prinz, D. K., Rottman, G. J., et al. (1996) Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements, J. Geophys. Res., 101 (D6), 95419569, doi: 10.1029/96JD00225.Google Scholar
Zhu, X., Yee, J.-H., Lloyd, S. A. and Storbel, D. F. (1999) Numerical modelling of chemical–dynamical coupling in the upper stratosphere and mesosphere, J. Geophys. Res., 104, 2399524011, doi: 10.1029/1999JD900476.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×