Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T17:18:19.497Z Has data issue: false hasContentIssue false

3 - Host-specificity of Salmonella infections in animal species

Published online by Cambridge University Press:  04 December 2009

Duncan Maskell
Affiliation:
University of Cambridge
Timothy S. Wallis
Affiliation:
Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
Pietro Mastroeni
Affiliation:
University of Cambridge
Get access

Summary

INTRODUCTION

The bacterial species Salmonella enterica subspecies enterica can be divided into over 2400 antigenically distinct serovars and the pathogenicity of most of these serovars is undefined. The majority of incidents of salmonellosis in humans and domestic animals are caused by relatively few serovars and these can be subdivided into three groups on the basis of host prevalence. The first group consists of host-specific serovars. These typically cause systemic disease in a limited number of phylogenetically related species. For example, S. enterica serovar Typhi, serovar Gallinarum and serovar Abortusovis are almost exclusively associated with systemic disease in humans, fowl and sheep respectively. The second group consists of host-restricted strains. These are primarily associated with one or two closely related host species but may also infrequently cause disease in other hosts. For example, S. enterica serovar Dublin and serovar Choleraesuis are generally associated with severe systemic disease in ruminants and pigs respectively (Sojka et al., 1977). However, these serovars are potentially capable of infecting other animal species and humans. The third group consists of the ubiquitous S. enterica serovars, such as Typhimurium and Enteritidis that usually induce gastroenteritis in a broad range of unrelated host species.

Clearly the nature and severity of Salmonella infections in different animal species varies enormously and is influenced by many factors including the infecting Salmonella serovar, strain virulence, infecting dose, host animal species, age and immune status of the host, and the geographical region. All these factors are likely to inter-relate.

Type
Chapter
Information
Salmonella Infections
Clinical, Immunological and Molecular Aspects
, pp. 57 - 88
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aabo, S., Christensen, J. P., Chadfield, M. S.et al. (2002). Quantitative comparison of intestinal invasion of zoonotic serotypes of Salmonella enterica in poultry. Avian Pathol, 31, 41–7.CrossRefGoogle ScholarPubMed
Ahmer, B. M., Watson, P. R., Wallis, T. S. and Heffron, F. (1999). Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol, 31, 971–82.CrossRefGoogle ScholarPubMed
Alpuche-Aranda, C. M., Berthiaume, E. P., Mock, B., Swanson, J. A. and Miller, S. I. (1995). Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility. Infect Immun, 63, 4456–62.Google ScholarPubMed
Baird, G. D., Manning, E. J. and Jones, P. W. (1985). Evidence for related virulence sequences in plasmids of Salmonella dublin and Salmonella typhimurium. J Gen Microbiol, 131, 1815–23.Google ScholarPubMed
Bakshi, C. S., Singh, V. P., Wood, M. W.et al.(2000). Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol, 182, 2341–4.CrossRefGoogle ScholarPubMed
Barrow, P. A. (2000). The paratyphoid salmonellae. Rev Sci Tech, 19, 351–75.CrossRefGoogle ScholarPubMed
Barrow, P. A. and Lovell, M. A. (1988). The association between a large molecular mass plasmid and virulence in a strain of Salmonella pullorum. J Gen Microbiol, 134, 2307–16.Google Scholar
Barrow, P. A., Huggins, M. B., Lovell, M. A. and Simpson, J. M. (1987). Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res Vet Sci, 42, 194–9.Google ScholarPubMed
Barrow, P. A., Simpson, J. M. and Lovell, M. A. (1988). Intestinal colonisation in the chicken by food-poisoning Salmonella serotypes; microbial characteristics associated with fecal excretion. Avian Pathology, 17, 571–88.CrossRefGoogle Scholar
Baskerville, A. and Dow, C. (1973). Pathology of experimental pneumonia in pigs produced by Salmonella cholerae-suis. J Comp Pathol, 83, 207–15.CrossRefGoogle ScholarPubMed
Bernard, S., Boivin, R., Menanteau, P. and Lantier, F. (2002). Cross-protection of Salmonella abortusovis, S. choleraesuis, S. dublin and S. gallinarum in mice induced by S. abortusovis and S. gallinarum: bacteriology and humoral immune response. Vet Res, 33, 55–69.Google ScholarPubMed
Beuzon, C. R., Meresse, S., Unsworth, K. E.et al. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. Embo J, 19, 3235–49.CrossRefGoogle ScholarPubMed
Bispham, J., Tripathi, B. N., Watson, P. R. and Wallis, T. S. (2001). Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun, 69, 367–77.CrossRefGoogle ScholarPubMed
Bolton, A. J., Osborne, M. P., Wallis, T. S. and Stephen, J. (1999). Interaction of Salmonella choleraesuis, Salmonella dublin and Salmonella typhimurium with porcine and bovine terminal ileum in vivo. Microbiology, 145, 2431–41.CrossRefGoogle ScholarPubMed
Brennan, M. A. and Cookson, B. T. (2000). Salmonella induces macrophage death by Caspase-1-dependent necrosis. Mol Microbiol, 38, 31–40.CrossRefGoogle ScholarPubMed
Brito, J. R., Xu, Y., Hinton, M. and Pearson, G. R. (1995). Pathological findings in the intestinal tract and liver of chicks after exposure to Salmonella serotypes Typhimurium or Kedougou. Br Vet J, 151, 311–23.CrossRefGoogle ScholarPubMed
Chadfield, M. S., Brown, D. J., Aabo, S., Christensen, J. P. and Olsen, J. E. (2003). Comparison of intestinal invasion and macrophage response of Salmonella Gallinarum and other host-adapted Salmonella enterica serovars in the avian host. Vet Microbiol, 92, 49–64.CrossRefGoogle ScholarPubMed
Chakravortty, D., Hansen-Wester, I. and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med, 195, 1155–66.CrossRefGoogle ScholarPubMed
Chen, L. M., Kaniga, K. and Galan, J. E. (1996). Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol, 21, 1101–15.CrossRefGoogle ScholarPubMed
Collier-Hyams, L. S., Zeng, H., Sun, J.et al. (2002). Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. J Immunol, 169, 2846–50.CrossRefGoogle ScholarPubMed
Conlan, J. W. and North, R. J. (1992). Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun, 60, 5164–71.Google ScholarPubMed
Coyle, E. F., Palmer, S. R., Ribeiro, C. D.et al. (1988). Salmonella enteritidis phage type 4 infection: association with hen's eggs. Lancet, 2, 1295–7.CrossRefGoogle ScholarPubMed
Danbara, H., Moriguchi, R., Suzuki, S.et al. (1992). Effect of 50 kilobase-plasmid, pKDSC50, of Salmonella choleraesuis RF-1 strain on pig septicemia. J Vet Med Sci, 54, 1175–8.CrossRefGoogle ScholarPubMed
Desmidt, M., Ducatelle, R. and Haesebrouck, F. (1997). Pathogenesis of Salmonella enteritidis phage type four after experimental infection of young chickens. Vet Microbiol, 56, 99–109.CrossRefGoogle ScholarPubMed
Dhillon, A. S., Alisantosa, B., Shivaprasad, H. L.et al. (1999). Pathogenicity of Salmonella enteritidis phage types 4, 8, and 23 in broiler chicks. Avian Dis, 43, 506–15.CrossRefGoogle ScholarPubMed
Dunlap, N. E., Benjamin, W. H., McCall, R. D.Jr, Tilden, A. B.Jr and Briles, D. E. (1991). A “safe-site” for Salmonella typhimurium is within splenic cells during the early phase of infection in mice. Microb Pathog, 10, 297–310.CrossRefGoogle ScholarPubMed
Eckmann, L., Rudolf, M. T., Ptasznik, A.et al. (1997). D-myo-Inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proc Natl Acad Sci USA, 94, 14456–60.CrossRefGoogle ScholarPubMed
Faddoul, G. P. and Fellows, G. W. (1965). Clinical manifestations of paratyphoid infection in pigeons. Avian Dis, 22, 377–81.CrossRefGoogle Scholar
Farrant, J. L., Sansone, A., Canvin, J. R.et al. (1997). Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol, 25, 785–96.CrossRefGoogle ScholarPubMed
Fedorka-Cray, P. J., Kelley, L. C., Stabel, T. J., Gray, J. T. and Laufer, J. A. (1995). Alternate routes of invasion may affect pathogenesis of Salmonella typhimurium in swine. Infect Immun, 63, 2658–64.Google ScholarPubMed
Frost, A. J., Bland, A. P. and Wallis, T. S. (1997). The early dynamic response of the calf ileal epithelium to Salmonella typhimurium. Vet Pathol, 34, 369–86.CrossRefGoogle ScholarPubMed
Galan, J. E. and Curtiss, R., III (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA, 86, 6383–7.CrossRefGoogle ScholarPubMed
Galyov, E. E., Wood, M. W., Rosqvist, R.et al. (1997). A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol, 25, 903–12.CrossRefGoogle ScholarPubMed
Gast, R. K. and Benson, S. T. (1995). The comparative virulence for chicks of Salmonella enteritidis phage type 4 isolates and isolates of phage types commonly found in poultry in the United States. Avian Dis, 39, 567–74.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. and Madara, J. L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol, 167, 1882–5.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Siber, A. M., Madara, J. L. and McCormick, B. A. (1999). Orchestration of neutrophil movement by intestinal epithelial cells in response to Salmonella typhimurium can be uncoupled from bacterial internalization. Infect Immun, 67, 608–17.Google ScholarPubMed
Gray, J. T., Fedorka-Cray, P. J., Stabel, T. J. and Ackermann, M. R. (1995). Influence of inoculation route on the carrier state of Salmonella choleraesuis in swine. Vet Microbiol, 47, 43–59.CrossRefGoogle ScholarPubMed
Gray, J. T., Stabel, T. J. and Fedorka-Cray, P. J. (1996). Effect of dose on the immune response and persistence of Salmonella choleraesuis infection in swine. Am J Vet Res, 57, 313–19.Google ScholarPubMed
Green, B. T., Lyte, M., Kulkarni-Narla, A. and Brown, D. R. (2003). Neuromodulation of enteropathogen internalization in Peyer's patches from porcine jejunum. J Neuroimmunol, 141, 74–82.CrossRefGoogle ScholarPubMed
Guilloteau, L. A., Wallis, T. S., Gautier, A. V.et al. (1996). The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses. Infect Immun, 64, 3385–93.Google ScholarPubMed
Halavatkar, H. and Barrow, P. A. (1993). The role of a 54-kb plasmid in the virulence of strains of Salmonella enteritidis of phage type 4 for chickens and mice. J Med Microbiol, 38, 171–6.CrossRefGoogle ScholarPubMed
Hall, G. A. and Jones, P. W. (1976). An experimental study of Salmonella dublin abortion in cattle. Br Vet J, 132, 60–5.CrossRefGoogle ScholarPubMed
Haneda, T., Okada, N., Nakazawa, N., Kawakami, T. and Danbara, H. (2001). Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun, 69, 2612–20.CrossRefGoogle ScholarPubMed
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 93, 815–26.CrossRefGoogle ScholarPubMed
Hersh, D., Monack, D. M., Smith, M. R., Ghori, N., Falkow, S. and Zychlinsky, A. (1999). The Salmonella invasin SipB induces macrophage apoptosis by binding to Caspase-1. Proc Natl Acad Sci USA, 96, 2396–401.CrossRefGoogle ScholarPubMed
Hinton, M., Pearson, G. R., Threlfall, E. J., Rowe, B., Woodward, M. and Wray, C. (1989). Experimental Salmonella enteritidis infection in chicks. Vet Rec, 124, 223.CrossRefGoogle ScholarPubMed
Hinton, M. H. (1973). Salmonella dublin abortion in cattle. Vet Rec, 93, 162.CrossRefGoogle ScholarPubMed
Hong, K. H. and Miller, V. L. (1998). Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol, 180, 1793–802.Google ScholarPubMed
Hopper, S. A. and Mawer, S. (1988). Salmonella enteritidis in a commercial layer flock. Vet Rec, 123, 351.CrossRefGoogle Scholar
Ishibashi, Y. and Arai, T. (1990). Roles of the complement receptor type 1 (CR1) and type 3 (CR3) on phagocytosis and subsequent phagosome–lysosome fusion in Salmonella-infected murine macrophages. FEMS Microbiol Immunol, 2, 89–96.Google ScholarPubMed
Jones, G. W., Rabert, D. K., Svinarich, D. M. and Whitfield, H. J. (1982). Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids. Infect Immun, 38, 476–86.Google ScholarPubMed
Jones, M. A., Wigley, P., Page, K. L., Hulme, S. D. and Barrow, P. A. (2001). Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun, 69, 5471–6.CrossRefGoogle Scholar
Jones, M. A., Wood, M. W., Mullan, P. B.et al. (1998). Secreted effector proteins of Salmonella dublin act in concert to induce enteritis. Infect Immun, 66, 5799–804.Google ScholarPubMed
Kaiser, P., Rothwell, L., Galyov, E. E.et al. (2000). Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology, 146, 3217–26.CrossRefGoogle ScholarPubMed
Keller, L. H., Schifferli, D. M., Benson, C. E., Aslam, S. and Eckroade, R. J. (1997). Invasion of chicken reproductive tissues and forming eggs is not unique to Salmonella enteritidis. Avian Dis, 41, 535–9.CrossRefGoogle Scholar
Knodler, L. A., Celli, J., Hardt, W. D.et al.(2002). Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol, 43, 1089–103.CrossRefGoogle ScholarPubMed
Kohler, H., McCormick, B. A. and Walker, W. A. (2003). Bacterial-enterocyte crosstalk: cellular mechanisms in health and disease. J Pediatr Gastroenterol Nutr, 36, 175–85.CrossRefGoogle ScholarPubMed
Libby, S. J., Adams, L. G., Ficht, T. A.et al. (1997). The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect Immun, 65, 1786–92.Google ScholarPubMed
Lichtensteiger, C. A. and Vimr, E. R. (2003). Systemic and enteric colonization of pigs by a hilA signature-tagged mutant of Salmonella choleraesuis. Microb Pathog, 34, 149–54.CrossRefGoogle ScholarPubMed
Lister, S. A. (1988). Salmonella enteritidis infection in broilers and broiler breeders. Vet Rec, 123, 350.CrossRefGoogle ScholarPubMed
Lyte, M. (2004). Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol, 12, 14–20.CrossRefGoogle ScholarPubMed
McCormick, B. A., Miller, S. I., Carnes, D. and Madara, J. L. (1995). Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun, 63, 2302–9.Google ScholarPubMed
Meyerholz, D. K. and Stabel, T. J. (2003). Comparison of early ileal invasion by Salmonella enterica serovars Choleraesuis and Typhimurium. Vet Pathol, 40, 371–5.CrossRefGoogle ScholarPubMed
Monack, D. M., Raupach, B., Hromockyj, A. E. and Falkow, S. (1996). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA, 93, 9833–8.CrossRefGoogle ScholarPubMed
Nadeau, W. J., Pistole, T. G. and McCormick, B. A. (2002). Polymorphonuclear leukocyte migration across model intestinal epithelia enhances Salmonella typhimurium killing via the epithelial derived cytokine, IL6. Microbes Infect, 4, 1379–87.CrossRefGoogle Scholar
Nakamura, M., Sato, S., Ohya, T., Suzuki, S. and Ikeda, S. (1985). Possible relationship of a 36-megadalton Salmonella enteritidis plasmid to virulence in mice. Infect Immun, 47, 831–3.Google ScholarPubMed
Norimatsu, M., Harris, J., Chance, V.et al.(2003). Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro. Immunology, 108, 55–61.CrossRefGoogle Scholar
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA, 95, 14057–9.CrossRefGoogle ScholarPubMed
Okamura, M., Miyamoto, T., Kamijima, Y.et al. (2001). Differences in abilities to colonize reproductive organs and to contaminate eggs in intravaginally inoculated hens and in vitro adherences to vaginal explants between Salmonella enteritidis and other Salmonella serovars. Avian Dis, 45, 962–71.CrossRefGoogle ScholarPubMed
Parkhill, J., Dougan, G., James, K. D.et al.(2001). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–52.CrossRefGoogle ScholarPubMed
Pasmans, F., Van, Immerseel F., Heyndrickx, M.et al. (2003). Host adaptation of pigeon isolates of Salmonella enterica subsp. enterica serovar Typhimurium variant Copenhagen phage type 99 is associated with enhanced macrophage cytotoxicity. Infect Immun, 71, 6068–74.CrossRefGoogle ScholarPubMed
Paulin, S. M., Watson, P. R., Benmore, A. R.et al. (2002). Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype Gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect Immun, 70, 6788–97.CrossRefGoogle ScholarPubMed
Popiel, I. and Turnbull, P. C. (1985). Passage of Salmonella enteritidis and Salmonella thompson through chick ileocecal mucosa. Infect Immun, 47, 786–92.Google ScholarPubMed
Poppe, C., Demczuk, W., McFadden, K. and Johnson, R. P. (1993). Virulence of Salmonella enteritidis phagetypes 4, 8 and 13 and other Salmonella spp. for day-old chicks, hens and mice. Can J Vet Res, 57, 281–7.Google ScholarPubMed
Pospischil, A., Wood, R. L. and Anderson, T. D. (1990). Peroxidase-antiperoxidase and immunogold labeling of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf in tissues of experimentally infected swine. Am J Vet Res, 51, 619–24.Google ScholarPubMed
Rabsch, W., Andrews, H. L., Kingsley, R. A.et al.(2002). Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun, 70, 2249–55.CrossRefGoogle ScholarPubMed
Reed, W. M., Olander, H. J. and Thacker, H. L. (1986). Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. Am J Vet Res, 47, 75–83.Google ScholarPubMed
Reis, B. P., Zhang, S., Tsolis, R. M.et al. (2003). The attenuated sopB mutant of Salmonella enterica serovar Typhimurium has the same tissue distribution and host chemokine response as the wild type in bovine Peyer's patches. Vet Microbiol, 97, 269–77.CrossRefGoogle ScholarPubMed
Richter-Dahlfors, A., Buchan, A. M. and Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med, 186, 569–80.CrossRefGoogle ScholarPubMed
Roy, P., Dhillon, A. S., Shivaprasad, H. L.et al. (2001). Pathogenicity of different serogroups of avian salmonellae in specific-pathogen-free chickens. Avian Dis, 45, 922–37.CrossRefGoogle ScholarPubMed
Santos, R. L., Tsolis, R. M., Baumler, A. J. and Adams, L. G. (2003). Pathogenesis of Salmonella-induced enteritis. Braz J Med Biol Res, 36, 3–12.CrossRefGoogle ScholarPubMed
Schesser, K., Dukuzumuremyi, J. M., Cilio, C.et al.(2000). The Salmonella YopJ-homologue AvrA does not possess YopJ-like activity. Microb Pathog, 28, 59–70.CrossRefGoogle Scholar
Shea, J. E., Beuzon, C. R., Gleeson, C., Mundy, R. and Holden, D. W. (1999). Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun, 67, 213–19.Google ScholarPubMed
Shea, J. E., Hensel, M., Gleeson, C. and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 2593–7.CrossRefGoogle ScholarPubMed
Sheppard, M., Webb, C., Heath, F.et al.(2003). Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol, 5, 593–600.CrossRefGoogle ScholarPubMed
Sojka, W. J., Wray, C., Shreeve, J. and Benson, A. J. (1977). Incidence of Salmonella infection in animals in England and Wales 1968–1974. J Hyg (Lond), 78, 43–56.CrossRefGoogle ScholarPubMed
Terakado, N., Sekizaki, T., Hashimoto, K . and Naitoh, S. (1983). Correlation between the presence of a fifty-megadalton plasmid in Salmonella dublin and virulence for mice. Infect Immun, 41, 443–4.Google ScholarPubMed
Townsend, S. M., Kramer, N. E., Edwards, R.et al.(2001). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun, 69, 2894–901.CrossRefGoogle ScholarPubMed
Tsolis, R. M., Adams, L. G., Ficht, T. A. and Baumler, A. J. (1999a). Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun, 67, 4879–85.Google Scholar
Uzzau, S., Gulig, P. A., Paglietti, B.et al.(2000). Role of the Salmonella abortusovis virulence plasmid in the infection of BALB/c mice. FEMS Microbiol Lett, 188, 15–18.CrossRefGoogle ScholarPubMed
Uzzau, S., Leori, G. S., Petruzzi, V.et al.(2001). Salmonella enterica serovar-host specificity does not correlate with the magnitude of intestinal invasion in sheep. Infect Immun, 69, 3092–9.CrossRefGoogle ScholarPubMed
Vazquez-Torres, A., Xu, Y., Jones-Carson, J.et al.(2000). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.CrossRefGoogle ScholarPubMed
Villarreal-Ramos, B., Manser, J. M., Collins, R. A.et al.(2000). Susceptibility of calves to challenge with Salmonella typhimurium 4/74 and derivatives harbouring mutations in htrA or purE. Microbiology, 146, 2775–83.CrossRefGoogle ScholarPubMed
Vladoianu, I. R., Chang, H. R. and Pechere, J. C. (1990). Expression of host resistance to Salmonella typhi and Salmonella typhimurium: bacterial survival within macrophages of murine and human origin. Microb Pathog, 8, 83–90.CrossRefGoogle ScholarPubMed
Wallis, T. S., Paulin, S. M., Plested, J. S., Watson, P. R. and Jones, P. W. (1995). The Salmonella dublin virulence plasmid mediates systemic but not enteric phases of salmonellosis in cattle. Infect Immun, 63, 2755–61.Google Scholar
Watson, P. R., Galyov, E. E., Paulin, S. M., Jones, P. W. and Wallis, T. S. (1998). Mutation of invH, but not stn, reduces Salmonella-induced enteritis in cattle. Infect Immun, 66, 1432–8.Google Scholar
Watson, P. R., Gautier, A. V., Paulin, S. M.et al.(2000a). Salmonella enterica serovars Typhimurium and Dublin can lyse macrophages by a mechanism distinct from apoptosis. Infect Immun, 68, 3744–7.CrossRefGoogle Scholar
Watson, P. R., Paulin, S. M., Bland, A. P., Jones, P. W. and Wallis, T. S. (1995). Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infect Immun, 63, 2743–54.Google ScholarPubMed
Watson, P. R., Paulin, S. M., Jones, P. W. and Wallis, T. S. (2000b). Interaction of Salmonella serotypes with porcine macrophages in vitro does not correlate with virulence. Microbiology, 146, 1639–49.CrossRefGoogle Scholar
Wells, C. L., Maddaus, M. A., Erlandsen, S. L. and Simmons, R. L. (1988). Evidence for the phagocytic transport of intestinal particles in dogs and rats. Infect Immun, 56, 278–82.Google ScholarPubMed
Wigley, P., Berchieri, A., Page, K. L.Jr., Smith, A. L. and Barrow, P. A. (2001). Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect Immun, 69, 7873–9.CrossRefGoogle ScholarPubMed
Wigley, P., Jones, M. A. and Barrow, P. A. (2002). Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol, 31, 501–6.CrossRefGoogle ScholarPubMed
Wills, R. W. (2000). Diarrhea in growing-finishing swine. Vet Clin North Am Food Anim Pract, 16, 135–61.CrossRefGoogle ScholarPubMed
Withanage, G. S. K., Kaiser, P., Wigley, P.et al.(2004). Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar Typhimurium. Infect Immun, 72, 2152–9.CrossRefGoogle ScholarPubMed
Wood, M. W., Jones, M. A., Watson, P. R.et al. (1998). Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol, 29, 883–91.CrossRefGoogle ScholarPubMed
Wood, M. W., Rosqvist, R., Mullan, P. B., Edwards, M. H. and Galyov, E. E. (1996). SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol, 22, 327–38.CrossRefGoogle Scholar
Zhang, S., Santos, R. L., Tsolis, R. M.et al.(2002a). Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett, 217, 243–7.CrossRefGoogle Scholar
Zhang, S., Santos, R. L., Tsolis, R. M.et al.(2002b). The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect Immun, 70, 3843–55.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×