Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-04T06:57:44.169Z Has data issue: false hasContentIssue false

7 - Earth System Models and the Global Biogeochemical Cycles

Published online by Cambridge University Press:  04 August 2010

Lennart O. Bengtsson
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Claus U. Hammer
Affiliation:
University of Copenhagen
Get access

Summary

ABSTRACT

Earth System Models have become a holy grail of the earth sciences. Earth System Models are a class of simulation that model a significant number of interactions between the atmosphere, the oceans, the land, the cryosphere, and the biogeochemical cycles. Such models are an evolution of climate and physical ocean models developed for disciplinary purposes and of the land surface models that have developed from ecology and hydrology. Increasingly they also include some components of the carbon cycle, ecosystems, and atmospheric photochemistry. The development of a new class of models successfully capturing the behavior of a system is itself a demonstration of a certain level of scientific knowledge. However, the development of Earth System Models has been strongly forced by a series of important scientific questions. Of special interest are questions coupling forcing (atmospheric greenhouse gases) and response (climate and ocean circulation). The carbon cycle is the best understood of the major global biogeochemical cycles, and so I focus on issues linked to carbon; however, the next generation of challenges will grow and include the nitrogen, ozone, sulfur, and iron cycles. In this chapter, I discuss some emerging questions and identify some key research areas associated with these new areas of inquiry.

Scientific Challenges

Where Does the Carbon Go?

For the past decades, as research has focused on the carbon cycle, there has been keen interest in the sinks of anthropogenic CO2 and especially the so-called missing sink. This is an Earth System modeling problem for two reasons.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×