Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-29T11:28:13.200Z Has data issue: false hasContentIssue false

9 - Nonlinearities in the Earth System: The Ocean's Role

Published online by Cambridge University Press:  04 August 2010

Lennart O. Bengtsson
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Claus U. Hammer
Affiliation:
University of Copenhagen
Get access

Summary

ABSTRACT

The climate system contains, even in its simplest possible representation, nonlinearities that can give rise to multiple equilibria. The role of the ocean in this context is discussed, and recent progress is reviewed. The paleoclimatic record indicates that such different equilibria are relevant to our understanding of past changes and likely are fundamental for a correct assessment of future changes.

Introduction

During the past two decades, paleoclimatic research has been the key to a quantitative understanding and appreciation of the full dynamics of the climate system. It has long been thought that the major climatic shifts have been caused by changes in the Earth's orbit, evidenced most dramatically by the sequence of ice ages during the Pleistocene (Imbrie et al., 1992). The advent of high-resolution archives such as ice cores from the polar regions modified this view considerably. Measurements of the stable isotopes of polar ice from Greenland indicated a succession of abrupt events during the last glacial (Dansgaard et al., 1984). The late Hans Oeschger, one of the pioneers in ice core research, demonstrated that the changes seen during the last deglaciation about 15, 000-11, 000 years ago are coeval with those registered in Swiss Gerzensee (Oeschger et al., 1984). This historical and bold hypothesis is reproduced here (Figure 9.1). Oeschger and his colleagues showed a strong correlation between these two records for the Younger Dryas (YD), the last of the series of abrupt events found by Dansgaard et al. (1984). This was surprising because these two paleoclimatic archives have very different characteristics and are located far apart.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×