Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-30T01:56:41.080Z Has data issue: false hasContentIssue false

2 - The Random Field Ising Model

Published online by Cambridge University Press:  21 October 2009

Irene Giardina
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

The Random Field Ising Model (RFIM) represents one of the simplest models of cooperative behaviour with quenched disorder, and it is, in a way, complementary to the Ising Spin Glass which will be extensively treated later in this book. It accounts for the presence of a random external magnetic field which antagonizes the ordering induced by the ferromagnetic spin–spin interactions. From an experimental point of view, on the other hand, as shown by Fishman and Aharony (1979) and Cardy (1984), it is equivalent to a dilute anti-ferromagnet in a uniform field (see Belanger, 1998 for a recent review on experimental results).

Despite twenty-five years of active and continuous research the RFIM is not yet completely understood. The problem seems related to the presence of bound states in the ferromagnetic phase, which make the standard theoretical approaches not adequate to analyze the critical behaviour. Here we discuss the RFIM in the context of perturbative field theory. The chapter is organized as follows: in Section 2.1 we define the model and outline the main expectations for its qualitative behaviour. In Section 2.2 we introduce an effective replicated ϕ4 field model where the disorder has been integrated out. Then we perform a perturbative analysis on this model (Section 2.3) and illustrate how the so-called dimensional reduction arises (Section 2.4). Finally, in Section 2.5 we introduce some generalized couplings which need to be taken into account to properly describe the system; we perform a perturbative Renormalization Group (RG) close to the upper critical dimension (Sections 2.6 and 2.7) and discuss the occurrence of a vitrous transition (Section 2.8).

Type
Chapter
Information
Random Fields and Spin Glasses
A Field Theory Approach
, pp. 9 - 34
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×