Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T00:18:15.933Z Has data issue: false hasContentIssue false

4 - The p = 2 spherical model

Published online by Cambridge University Press:  21 October 2009

Irene Giardina
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

In the previous chapters we have seen how the presence of disorder may be responsible for a novel behaviour at low temperature where bound states appear. In the case of the Random Field Ising Model we have been able to trace evidence of this nontrivial spin glass phase within a field theory, in both approaches from statics and dynamics. However, we did not go far enough to describe this phase and characterize its properties. In the rest of this book our aim will be precisely to address this problem, restricting ourselves to systems where it has been mostly studied in the last thirty years: spin glasses. For spin glasses, contrary to the RFIM, there is no random-site magnetic field; instead, the heterogeneity occurs in the exchange interactions between the spins that are then modelled as quenched random variables.

In this chapter we consider a first simple model of spin glass, the p = 2 spherical model, that is constrained to spins interacting by pairs. As usual, understanding is greatly helped if one is able to obtain an exact solution for a model that possesses some of the characteristic features of interest. This is the case of this spin model that, despite its coupling randomness, is exactly soluble, both for the statics and the dynamics, and does not require the replica method.

As we shall see, the p = 2 spherical model has not a true spin glass behaviour and is rather a disguised ferromagnet.

Type
Chapter
Information
Random Fields and Spin Glasses
A Field Theory Approach
, pp. 57 - 78
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×