Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T05:56:15.650Z Has data issue: false hasContentIssue false

4 - Spontaneous symmetry breaking

Published online by Cambridge University Press:  17 August 2009

David M. Brink
Affiliation:
University of Oxford
Ricardo A. Broglia
Affiliation:
Università degli Studi di Milano
Get access

Summary

General background

As already mentioned in previous chapters, the nuclear structure exhibits many similarities with the electron structure of metals. In both cases, one is dealing with systems of fermions which may be characterized in a first approximation in terms of independent particle motion. However in both systems, important correlations in the particle motion arise from the action of the forces between particles. In particular, it is well established that nucleons moving close to the Fermi energy in time-reversal states have the tendency to form Cooper pairs which eventually condense (Bohr, Mottelson and Pines (1958), Bohr and Mottelson (1975)). This phenomenon, which has its parallel in low-temperature superconductivity, modifies the structure of nuclei in an important way. In particular it influences the occupation numbers of single-particle levels around the Fermi surface (Chapter 3), the moment of inertia of deformed nuclei (Chapter 3), the lifetime of alpha and cluster decay and fission processes (Chapter 7), the depopulation of superdeformed configurations (Chapter 6) and the cross-sections of two-nucleon transfer reactions (Chapter 5).

While one does not expect the transition between the normal and the superfluid phases of the atomic nucleus to be sharp because of finite size effects and the central role played by fluctuations (see Chapter 6), there is a strong analogy between phenomena in nuclei and the corresponding phenomena in bulk superconductors. Spontaneous symmetry breaking is important in both nuclei and superconductors.

Type
Chapter
Information
Nuclear Superfluidity
Pairing in Finite Systems
, pp. 72 - 91
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×