Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T17:43:22.391Z Has data issue: false hasContentIssue false

7 - Plastic behaviour of nuclei and other finite systems

Published online by Cambridge University Press:  17 August 2009

David M. Brink
Affiliation:
University of Oxford
Ricardo A. Broglia
Affiliation:
Università degli Studi di Milano
Get access

Summary

In some circumstances the nucleus acts as a liquid and in others like an elastic solid. In general it responds elastically to sudden forces, and it flows plastically over longer periods of time (Bertsch (1980, 1988)). Examples of this behaviour are giant resonances and low-lying collective surface vibrations respectively. In the first case, as we shall see in Section 8.3, pairing plays no role, at least in the case of nuclei lying along the valley of stability. The nuclear single-particle states change their shape but the occupation numbers do not change. The energy of a giant resonance in a nucleus is of the order of the energy difference between major shells (ħω ≈ 41/A1/3 MeV, ≈ 7 MeV, for medium heavy nuclei), a quantity which is much larger than the pairing gap Δ ≈ 1–1.5 MeV. Giant resonances are fast modes, the collective motion is dominated by mean-field effects and the rigidity is provided by the mean field (Bortignon, Bracco and Broglia (1998)). On the other hand, low-energy surface modes are associated with particle–hole excitations which are of the order of the pairing gap. Pairing plays a dominant role and the collective states are coherent linear combinations of two-quasiparticle excitations. The situation is, however, different in the case of exotic nuclei, where the last nucleons are very weakly bound. Nucleon spill out makes these systems particularly polarizable leading to ‘pigmy resonances’, whose properties can be influenced by pairing (Frascaria et al. (2004), see also last paragraph of Chapter 6).

Type
Chapter
Information
Nuclear Superfluidity
Pairing in Finite Systems
, pp. 154 - 169
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×