Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-30T00:23:25.452Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  04 November 2009

Joseph I. Kapusta
Affiliation:
University of Minnesota
Charles Gale
Affiliation:
McGill University, Montréal
Get access

Summary

What happens when ordinary matter is so greatly compressed that the electrons form a relativistic degenerate gas, as in a white dwarf star? What happens when the matter is compressed even further so that atomic nuclei overlap to form superdense nuclear matter, as in a neutron star? What happens when nuclear matter is heated to such great temperatures that the nucleons and pions melt into quarks and gluons, as in high-energy nuclear collisions? What happened in the spontaneous symmetry breaking of the unified theory of the weak and electromagnetic interactions during the big bang? Questions like these have fascinated us for a long time. The purpose of this book is to develop the fundamental principles and mathematical techniques that enable the formulation of answers to these mind-boggling questions. The study of matter under extreme conditions has blossomed into a field of intense interdisciplinary activity and global extent. The analysis of the collective behavior of interacting relativistic systems spans a rich palette of physical phenomena. One of the ultimate goals of the whole program is to map out the phase diagram of the standard model and its extensions.

This text assumes that the reader has completed graduate level courses in thermal and statistical physics and in relativistic quantum field theory.

Type
Chapter
Information
Finite-Temperature Field Theory
Principles and Applications
, pp. xi - xii
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Joseph I. Kapusta, University of Minnesota, Charles Gale, McGill University, Montréal
  • Book: Finite-Temperature Field Theory
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535130.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Joseph I. Kapusta, University of Minnesota, Charles Gale, McGill University, Montréal
  • Book: Finite-Temperature Field Theory
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535130.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Joseph I. Kapusta, University of Minnesota, Charles Gale, McGill University, Montréal
  • Book: Finite-Temperature Field Theory
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535130.001
Available formats
×