Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T03:19:28.866Z Has data issue: false hasContentIssue false

14 - Heavy ion collisions

Published online by Cambridge University Press:  04 November 2009

Joseph I. Kapusta
Affiliation:
University of Minnesota
Charles Gale
Affiliation:
McGill University, Montréal
Get access

Summary

The only practical way of creating and studying hot and dense strongly interacting matter in the laboratory is by colliding heavy nuclei at high energies. Some of the pioneering studies have used nuclear emulsion data of highly energetic cosmic ray events. However, a serious handicap there is the lack of control over the physical beam characteristics. For a few decades now, there has existed a vibrant experimental program seeking to explore the physics of nuclear collisions in different energy regimes and with different combinations of beam and target nuclei. The pioneering experiments at the Lawrence Berkeley National Laboratory (Berkeley, USA) have been followed by several other experimental ventures. It is impossible to enumerate all the facilities, but some important efforts at the high end of the energy spectrum have been pursued at the GSI (Darmstadt, Germany), CERN (Geneva, Switzerland), and at Brookhaven National Laboratory (Upton, USA). The Relativistic Heavy Ion Collider (RHIC) is located at BNL, and the Large Hadron Collider (LHC) has a heavy ion program expected to begin at CERN around 2007. A healthy experimental program in high energy nuclear collisions requires a basis in nucleon–nucleon and nucleon–nucleus collisions. These in fact constitute a crucial category of control experiments for the more complex nucleus–nucleus events. The study of strongly interacting matter at high temperature and density enjoys an active and fruitful collaboration between the experimental and theoretical communities.

In relativistic nuclear collisions, multiple scatterings involving both the primary constituents (the original nucleons) and the secondary particles (mostly created pions) can, in principle, drive the system towards a state of local thermodynamic equilibrium. The reason for this originates in the phenomenology of hadronic collisions.

Type
Chapter
Information
Finite-Temperature Field Theory
Principles and Applications
, pp. 317 - 360
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×