Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T09:48:28.392Z Has data issue: false hasContentIssue false

5 - Boundary layers under strong distortion: an experimentalist's view

Published online by Cambridge University Press:  12 August 2009

J. F. Morrison
Affiliation:
Imperial College, London
Geoff Hewitt
Affiliation:
Imperial College of Science, Technology and Medicine, London
Christos Vassilicos
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Abstract

The problems concerning the understanding and prediction of strongly-distorted turbulent boundary layers are reviewed. Some of the views expressed emanate from the Isaac Newton Institute (INI) programme on turbulence in 1999; others are an experimentalist's view of current modelling techniques and the requirements for future work. The purpose of this chapter is, first, to pinpoint research that has already been carried out in this area and, second, to highlight gaps in our knowledge where there is a need for specific experiments to enable the subsequent development of existing turbulence models. Attention is not restricted to Reynolds-averaged Navier–Stokes (RANS) solvers but also considers the problems regarding the modelling for large-eddy simulation (LES). The subject of this chapter is vast, and therefore ample use is made of existing reviews by authors who are experts in specific subject areas. These include ‘extra rates of strain’, changes in boundary conditions, as well as even more complex phenomena such as shock/boundary-layer interaction and boundary layers with a variety of embedded vortices. While we have many of the numerical tools required for design and prediction, it is clear that physical understanding of the dominant mechanisms is lacking and therefore our ability to predict them is also. As far as our existing knowledge is concerned, emphasis is placed on an empirical approach for reasons of pragmatism. Some ‘application challenges’ presented during the course of the INI programme on turbulence are addressed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×