Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T16:58:51.366Z Has data issue: false hasContentIssue false

42 - HCMV: molecular basis of persistence and latency

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HCMV

Published online by Cambridge University Press:  24 December 2009

Michael A. Jarvis
Affiliation:
Vaccine and Gene Therapy Institute, Oregon Health Science University, Portland, OR, USA
Jay A. Nelson
Affiliation:
Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Human cytomegalovirus (HCMV) is an ubiquitous β-herpesvirus that establishes a lifelong infection within the host. Although HCMV is generally asymptomatic within the normal individual, the virus causes severe and incapacitating disease in immune compromised patients (Pass, 2001). A critical component for HCMV persistence in the non-immune compromised host is the ability of the virus to establish cellular sites of latency as well as persistent infection. During latency, the HCMV genome is maintained within the cell with limited viral gene expression reactivating virus upon cellular stimulation. In HCMV persistent infection, infectious virus is continually produced in the cell with minimal cytopathic effect thereby enabling long-term infection. Endothelial cells (ECs) and specific subpopulations of the myeloid lineage are believed to represent important sites of persistent HCMV replication and latency, respectively. Recent studies of HCMV and the closely related murine cytomegalovirus (MCMV) are beginning to identify the virally encoded genetic determinants required for replication in these cell types. The establishment of latent infection in myeloid cells that are critical cellular components of the host immune system, also closely interconnects HCMV and the host immune response. This chapter will focus on the role of ECs and myeloid cells as sites of CMV persistent replication and latency, and the viral mechanisms that modulate cellular functions to ensure survival and reactivation within the host.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 765 - 779
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. P., Chandrika, T., Lawrence, L., and Baggett, J. (1983). Cytomegalovirus infections in neonates acquired by blood transfusions. Pediatr. Infect. Dis., 2, 114–118.CrossRefGoogle ScholarPubMed
Adler, S. P., Baggett, J., and McVoy M. (1985). Transfusion-associated cytomegalovirus infections in seropositive cardiac surgery patients. Lancet, 2, 743–747.CrossRefGoogle ScholarPubMed
Allavena, P., Piemonti, L., Longoni, D., Bernasconi, S., Stoppacciaro, A., Ruco, L., and Mantovani, A. (1998). IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur. J. Immunol., 28, 359–369.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Asadullah, K., Prosch, S., Audring, H.et al. (1999). A high prevalence of cytomegalovirus antigenaemia in patients with moderate to severe chronic plaque psoriasis: an association with systemic tumour necrosis factor alpha overexpression. Br. J. Dermatol., 141, 94–102.CrossRefGoogle ScholarPubMed
Bolovan-Fritts, C. and Wiedeman J. A. (2001). Human cytomegalovirus strain Toledo lacks a virus-encoded tropism factor required for infection of aortic endothelial cells. J. Infect. Dis., 184, 1252–1261.CrossRefGoogle ScholarPubMed
Bolovan-Fritts, C. A., Mocarski, E. S., and Wiedeman J. A. (1999). Peripheral blood CD14(+) cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood, 93, 394–398.Google ScholarPubMed
Borst, E. M., Hahn, G., Koszinowski, U. H., and Messerle, M. (1999). Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol., 73, 8320–8329.Google ScholarPubMed
Bowden, R. A. (1995). Transfusion-transmitted cytomegalovirus infection. Hematol. Oncol. Clin. North Am., 9, 155–166.CrossRefGoogle ScholarPubMed
Bowden, R. A., Slichter, S. J., Sayers, M.et al. (1995). A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant. Blood, 86, 3598–3603.Google ScholarPubMed
Brune, W., Menard, C., Heesemann, J., and Koszinowski, U. H. (2001). A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science, 291, 303–305.CrossRefGoogle ScholarPubMed
Brytting, M., Mousavi-Jazi, M., Bostrom, L.et al. (1995). Cytomegalovirus DNA in peripheral blood leukocytes and plasma from bone marrow transplant recipients. Transplantation, 60, 961–965.CrossRefGoogle ScholarPubMed
Burns, L. J., Pooley, J. C., Walsh, D. J., Vercellotti, G. M., Weber, M. L. and Kovacs, A. (1999). Intercellular adhesion molecule-1 expression in endothelial cells is activated by cytomegalovirus immediate early proteins. Transplantation, 67, 137–44.CrossRefGoogle ScholarPubMed
Cebulla, C. M., Miller, D. M., Knight, D. A., Briggs, B. R., McGaughy, V. and Sedmak, D. D. (2000). Cytomegalovirus induces sialyl Lewis(x) and Lewis(x) on human endothelial cells. Transplantation, 69, 1202–1209.CrossRefGoogle ScholarPubMed
Colberg-Poley, A. M., Patel, M. B., Erezo, D. P., and Slater, J. E. (2000). Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J. Gen. Virol., 81, 1779–1789.CrossRefGoogle Scholar
Dankner, W. M., McCutchan, J. A., Richman, D. D., Hirata, K., and Spector, S. A. (1990). Localization of human cytomegalovirus in peripheral blood leukocytes by in situ hybridization. J. Infect. Dis., 161, 31–36.CrossRefGoogle ScholarPubMed
Dargan, D. J., Jamieson, F. E., MacLean, J., Dolan, A., Addison, C., and McGeoch, D. J. (1997). The published DNA sequence of human cytomegalovirus strain AD169 lacks 929 base pairs affecting genes UL42 and UL43. J. Virol., 71, 9833–9836.Google ScholarPubMed
Docke, W. D., Prosch, S., Fietze, E.et al. (1994). Cytomegalovirus reactivation and tumour necrosis factor. Lancet, 343, 268–269.CrossRefGoogle ScholarPubMed
Einhorn, L. and Ost, A. (1984). Cytomegalovirus infection of human blood cells. J. Infect. Dis., 149, 207–214.CrossRefGoogle ScholarPubMed
Fietze, E., Prosch, S., Reinke, P. (1994). Cytomegalovirus infection in transplant recipients. The role of tumor necrosis factor. Transplantation, 58, 675–680.CrossRefGoogle ScholarPubMed
Fish, K. N., Söderberg-Naucler, C., Mills, L. K., Stenglein, S., and Nelson, J. A. (1998). Human cytomegalovirus persistently infects aortic endothelial cells. J. Virol., 72, 5661–5668.Google ScholarPubMed
Friedman, H. M., Macarak, E. J., MacGregor, R. R., Wolfe, J., and Kefalides, N. A. (1981). Virus infection of endothelial cells. J. Infect. Dis., 143, 266–273.CrossRefGoogle ScholarPubMed
Gerna, G., Percivalle, E., Lilleri, D.et al. (2005). Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131–128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J. Gen. Virol., 86, 275–84.CrossRefGoogle ScholarPubMed
Girgis, R. E., Tu, I., Berry, G. J.et al. (1996). Risk factors for the development of obliterative bronchiolitis after lung transplantation. J. Heart Lung Transpl., 15, 1200–1208.Google ScholarPubMed
Gnann, J. W. Jr., Ahlmen, J., Svalander, C., Olding, L., Oldstone, M. B., and Nelson, J. A. (1988). Inflammatory cells in transplanted kidneys are infected by human cytomegalovirus. Am. J. Pathol., 132, 239–248.Google ScholarPubMed
Goldmacher, V. S. (2002). vMIA, a viral inhibitor of apoptosis targeting mitochondria. Biochimie, 84, 177–185.CrossRefGoogle ScholarPubMed
Goldmacher, V. S., Bartle, L. M., Skaletskaya, A.et al. (1999). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl Acad. Sci. USA, 96, 12536–12541.CrossRefGoogle Scholar
Goodrum, F. D., Jordan, C. T., High, K., and Shenk, T. (2002). Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc. Natl. Acad. Sci. USA, 99, 16255–16260.CrossRefGoogle ScholarPubMed
Grattan, M. T., Moreno-Cabral, C. E., Starnes, V. A., Oyer, P. E.Stinson, E. B., and Shumway, N. E. (1989). Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. J. Am. Med. Assoc., 261, 3561–3566.CrossRefGoogle ScholarPubMed
Greaves, R. F. and Mocarski, E. S. (1998). Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J. Virol., 72, 366–379.Google ScholarPubMed
Grundy, J. E., Lawson, K. M., MacCormac, L. P., Fletcher, J. M., and Yong, K. L. (1998). Cytomegalovirus-infected endothelial cells recruit neutrophils by the secretion of C–X–C chemokines and transmit virus by direct neutrophil– endothelial cell contact and during neutrophil transendothelial migration. J. Infect. Dis., 177, 1465–1474.CrossRefGoogle ScholarPubMed
Gyorkey, F., Melnick, J. L., Guinn, G. A., Gyorkey, P., and DeBakey, M. E. (1984). Herpesviridae in the endothelial and smooth muscle cells of the proximal aorta in arteriosclerotic patients. Exp. Mol. Pathol., 40, 328–339.CrossRefGoogle ScholarPubMed
Hahn, G., Jores, R., and Mocarski, E. S. (1998). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl Acad. Sci. USA, 95, 3937–3942.CrossRefGoogle Scholar
Hahn, G., Khan, H., Baldanti, F., Koszinowski, U. H., Revello, M. G. and Gerna, G. (2002). The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J. Virol., 76, 9551–9555.CrossRefGoogle ScholarPubMed
Hahn, G., Rose, D., Wagner, M., Rhiel, S., and McVoy, M. A. (2003). Cloning of the genomes of human cytomegalovirus strains Toledo, TownevarRIT3, and Towne long as BACs and site-directed mutagenesis using a PCR-based technique. Virology, 307, 164–177.CrossRefGoogle Scholar
Hahn, G., Revello, M. G., Patrone, M.et al. (2004). Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol. 78, 10023–10033.CrossRefGoogle ScholarPubMed
Hanson, L. K., Dalton, B. L., and Karabekian, Z. (1999a). Transcriptional analysis of the murine cytomegalovirus HindIII-I region: identification of a novel immediate-early gene region. Virology, 260, 156–164.CrossRefGoogle Scholar
Hanson, L. K., Slater, J. S., Karabekian, Z.et al. (1999b). Replication of murine cytomegalovirus in differentiated macrophages as a determinant of viral pathogenesis. J. Virol., 73, 5970–5980.Google Scholar
Hanson, L. K., Slater, J. S., Karabekian, Z., Ciocco-Schmitt, G. and Campbell, A. E. (2001). Products of US22 genes M140 and M141 confer efficient replication of murine cytomegalovirus in macrophages and spleen. J. Virol., 75, 6292–6302.CrossRefGoogle ScholarPubMed
Harada, A., Sekido, N., Akahoshi, T., Wada, T., Mukaida, N., and Matsushima, K. (1994). Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol., 56, 559–564.CrossRefGoogle Scholar
Hatch, W. C., Freedman, A. R., Boldthoule, D. M., Groopman, J. E., and Terwilliger, E. F. (1997). Differential effects of interleukin-13 on cytomegalovirus and human immunodeficiency virus infection in human alveolar macrophages. Blood, 89, 3443–3450.Google ScholarPubMed
Hendrix, M., Dormans, P. H. J., Kitseelar, P., Bosman, F., and Bruggeman, C. A. (1989). The presence of CMV nucleic acids arterial walls of atherosclerotic and non-atherosclerotic patients. Am. J. Path., 134, 1151–1157.Google Scholar
Hendrix, M. G., Salimans, M. M. van Boven, C. P., and Bruggeman, C. A. (1990). High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am. J. Pathol., 136, 23–28.Google Scholar
Hersman, J., Meyers, J. D., Thomas, E. D., Buckner, C. D., and Clift, R. (1982). The effect of granulocyte transfusions on the incidence of cytomegalovirus infection after allogeneic marrow transplantation. Ann. Intern. Med., 96, 149–152.CrossRefGoogle ScholarPubMed
Ho, M. (1990). Epidemiology of cytomegalovirus infections. Rev. Infect. Dis., 12 (Suppl. 7), S701–5710.CrossRefGoogle ScholarPubMed
Hobom, U., Brune, W., Messerle, M., Hahn, G., and Koszinowski, U. H. (2000). Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J. Virol., 74, 7720–7729.CrossRefGoogle ScholarPubMed
Howell, C. L., Miller, M. J., and Martin, W. J. (1979). Comparison of rates of virus isolation from leukocyte populations separated from blood by conventional and Ficoll-Paque/Macrodex methods. J. Clin. Microbiol., 10, 533–537.Google ScholarPubMed
Humar, A., Gillingham, K. J., Payne, W. D., Dunn, D. L., Sutherland, D. E., and Matas, A. J. (1999a). Association between cytomegalovirus disease and chronic rejection in kidney transplant recipients. Transplantation, 68, 1879–1883.CrossRefGoogle Scholar
Humar, A., Louis, St P., Mazzulli, T.et al. (1999b). Elevated serum cytokines are associated with cytomegalovirus infection and disease in bone marrow transplant recipients. J. Infect. Dis., 179, 484–488.CrossRefGoogle Scholar
Hummel, M., Zhang, Z., Yan, S. (2001). Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency. J. Virol., 75, 4814–4822.CrossRefGoogle ScholarPubMed
Ibanez, C. E., Schrier, R., Ghazal, P., Wiley, C., and Nelson, J. A. (1991). Human cytomegalovirus productively infects primary differentiated macrophages. J. Virol., 65, 6581–6588.Google ScholarPubMed
Joo, F. (1992). The cerebral microvessels in culture, an update. J. Neurochem., 58, 1–17.CrossRefGoogle Scholar
Kahl, M., Siegel-Axel D., Stenglein S., Jahn, G., and Sinzger, C. (2000). Efficient lytic infection of human arterial endothelial cells by human cytomegalovirus strains. J. Virol., 74, 7628–7635.CrossRefGoogle ScholarPubMed
Keenan, R. J., Lega, M. E., Dummer, J. S.et al. (1991). Cytomegalovirus serologic status and postoperative infection correlated with risk of developing chronic rejection after pulmonary transplantation. Transplantation, 51, 433–438.CrossRefGoogle ScholarPubMed
Knight, D. A., Waldman, W. J., and Sedmak, D. D. (1999). Cytomegalovirus-mediated modulation of adhesion molecule expression by human arterial and microvascular endothelial cells. Transplantation, 68, 1814–1818.CrossRefGoogle ScholarPubMed
Koffron, A., Varghese, T., and Hummel, M. (1999). Immunosuppression is not required for reactivation of latent murine cytomegalovirus. Transpl. Proc., 31, 1395–1396.CrossRefGoogle Scholar
Kondo, K., Kaneshima, H., and Mocarski, E. S. (1994). Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc. Natl Acad. Sci. U S A, 91, 11879–11883.CrossRefGoogle ScholarPubMed
Kondo, K., Xu, J., and Mocarski, E. S. (1996). Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc. Natl Acad. Sci. USA, 93, 11137–11142.CrossRefGoogle ScholarPubMed
Koskinen, P., Lemstrom, K., Mattila, S., Hayry, P., and Nieminen, M. S. (1996). Cytomegalovirus infection associated accelerated heart allograft arteriosclerosis may impair the late function of the graft. Clin. Transpl., 10, 487–493.Google ScholarPubMed
Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V., and Pestka, S. (2000). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA, 97, 1695–1700.CrossRefGoogle Scholar
MacCormac, L. P. and Grundy, J. E. (1999). Two clinical isolates and the Toledo strain of cytomegalovirus contain endothelial cell tropic variants that are not present in the AD169, Towne, or Davis strains. J. Med. Virol., 57, 298–307.3.0.CO;2-P>CrossRefGoogle Scholar
Maciejewski, J. P., Bruening, E. E., Donahue, R. E., Mocarski, E. S., Young, N. S., and Jeor, St S. C. (1992). Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood, 80, 170–178.Google ScholarPubMed
Maciejewski, J. P., Bruening, E. E., Donahue, R. E.et al. (1993). Infection of mononucleated phagocytes with human cytomegalovirus. Virology, 195, 327–336.CrossRefGoogle ScholarPubMed
Marchini, A., Liu, H., and Zhu, H. (2001). Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J. Virol., 75, 1870–1878.CrossRefGoogle ScholarPubMed
Menard, C., Wagner, M., and Ruzsics, Z. (2003). Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J. Virol., 77, 5557–5570.CrossRefGoogle ScholarPubMed
Mendelson, M., Monard, S., Sissons, P., and Sinclair, J. (1996). Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J. Gen. Virol., 77, 3099–3102.CrossRefGoogle ScholarPubMed
Minton, E. J., Tysoe, C., Sinclair, J. H., and Sissons, J. G. (1994). Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. J. Virol., 68, 4017–4021.Google ScholarPubMed
Mocarski, E. S., Prichard, M. N., Tan, C. S., and Brown, J. M. (1997). Reassessing the organization of the UL42–UL43 region of the human cytomegalovirus strain AD169 genome. Virology, 239, 169–175.CrossRefGoogle ScholarPubMed
Moses, A. V. and Nelson, J. A. (1994). HIV infection of human brain capillary endothelial cells – implications for AIDS dementia. Adv. Neuroimmunol., 4, 239–247.CrossRefGoogle ScholarPubMed
Movassagh, M., Gozlan, J., Senechal, B., Baillou, C., Petit, J. C., and Lemoine, F. M. (1996). Direct infection of CD34+ progenitor cells by human cytomegalovirus: evidence for inhibition of hematopoiesis and viral replication. Blood, 88, 1277–1283.Google ScholarPubMed
Murayama, T., Mukaida, N., Khabar, K. S., and Matsushima, K. (1998). Potential involvement of IL-8 in the pathogenesis of human cytomegalovirus infection. J. Leukoc. Biol., 64, 62–67.CrossRefGoogle ScholarPubMed
Myerson, D., Hackman, R. C., Nelson, J. A., Ward, D. C., and McDougall, J. K. (1984). Widespread presence of histologically occult cytomegalovirus. Hum. Pathol., 15, 430–439.CrossRefGoogle ScholarPubMed
Nordoy, I., Muller, F., Nordal, K. P.et al. (1999). Immunologic parameters as predictive factors of cytomegalovirus disease in renal allograft recipients. J. Infect. Dis., 180, 195–198.CrossRefGoogle ScholarPubMed
Nordoy, I., Muller, F., Nordal, K. P., Rollag, H., Aukrust, P., and Froland, S. S. (2000a). Chemokines and soluble adhesion molecules in renal transplant recipients with cytomegalovirus infection. Clin. Exp. Immunol., 120, 333–337.CrossRefGoogle Scholar
Nordoy, I., Muller, F., Nordal, K. P.et al. (2000b). The role of the tumor necrosis factor system and interleukin-10 during cytomegalovirus infection in renal transplant recipients. J. Infect. Dis., 181, 51–57.CrossRefGoogle Scholar
Oswald, I. P., Wynn, T. A., Sher, A., and James, S. L. (1992). Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc. Natl Acad. Sci. USA, 89, 8676–8680.CrossRefGoogle ScholarPubMed
Page, C., Rose, M., Yacoub, M., and Pigott, R. (1992). Antigenic heterogeneity of vascular endothelium. Am. J. Pathol., 141, 673–683.Google ScholarPubMed
Pampou, S., Gnedoy, S. N., Bystrevskaya, V. B.et al. (2000). Cytomegalovirus genome and the immediate-early antigen in cells of different layers of human aorta. Virchows Arch., 436, 539–552.CrossRefGoogle ScholarPubMed
Pass, R. F. (2001). Cytomegalovirus. In Knipe, D. M., Griffin, D. E., Lamb, R. A., Martin, M. A., Roizman, B., and Straus, S. E. (eds.), Fields Virology, 4th edn. pp. 2675–2705 Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Patrone, M., Secchi, M., Fiorina, L., Ierardi, M., Milanesi, G., and Gallina, A. (2005). Human cytomegalovirus UL130 protein promotes endothelial cell infection through a producer cell modification of the virion. J. Virol., 79, 8361–8373.CrossRefGoogle ScholarPubMed
Patterson, C. E. and Shenk, T. (1999). Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J. Virol., 73, 7126–7131.Google ScholarPubMed
Petrie, B. L., Melnick, J. L., Adam, E., Burek, J., McCollum, C. H., and DeBakey, M. E. (1987). Nucleic acid sequences of human cytomegalovirus in cells cultured from human arterial tissue. J. Infect. Dis., 155, 158–159.CrossRefGoogle ScholarPubMed
Prösch, S., Staak, K., Stein, J.et al. (1995). Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology, 208, 197–206.Google Scholar
Prösch, S., Heine, A. K., Volk, H. D., and Kruger, D. H. (2001). CCAAT/enhancer-binding proteins alpha and beta negatively influence the capacity of tumor necrosis factor alpha to up-regulate the human cytomegalovirus IE1/2 enhancer/promoter by nuclear factor kappa B during monocyte differentiation. J. Biol. Chem., 276, 40712–40720.Google Scholar
Rajotte, D., Arap, W., Hagedorn, M., Koivunen, E., Pasqualini, R., and Ruoslahti, E. (1998). Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest., 102, 430–437.CrossRefGoogle ScholarPubMed
Reboredo, M., Greaves, R. F., and Hahn, G. (2004). Human cytomegalovirus proteins encoded by UL37 exon 1 protect infected fibroblasts against virus-induced apoptosis and are required for efficient virus replication. J. Gen. Virol., 85, 3555–35567.CrossRefGoogle ScholarPubMed
Rice, G. P., Schrier, R. D., and Oldstone, M. B. (1984). Cytomegalovirus infects human lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proc. Natl Acad. Sci. USA, 81, 6134–6138.CrossRefGoogle ScholarPubMed
Ritter, T., Brandt, C., Prosch, S.et al. (2000). Stimulatory and inhibitory action of cytokines on the regulation of hCMV-IE promoter activity in human endothelial cells. Cytokine, 12, 1163–1170.CrossRefGoogle ScholarPubMed
Rue, C. A., Jarvis, M. A., Knoche, A. J.et al. (2004). A cyclooxygenase-2 homologue encoded by rhesus cytomegalovirus is a determinant for endothelial cell tropism. J. Virol., 78, 12529–12536.CrossRefGoogle ScholarPubMed
Schrier, R. D., Nelson, J. A., and Oldstone, M. B. (1985). Detection of human cytomegalovirus in peripheral blood lymphocytes in a natural infection. Science, 230, 1048–1051.CrossRefGoogle Scholar
Simmons, P., Kaushansky, K., and Torok-Storb, B. (1990). Mechanisms of cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells. Proc. Natl Acad. Sci. USA, 87, 1386–1390.CrossRefGoogle ScholarPubMed
Sindre, H., Tjonnfjord, G. E., Rollag, H.et al. (1996). Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood, 88, 4526–4533.Google ScholarPubMed
Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S., The, T. H., and Jahn, G. (1995). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol., 76, 741–750.CrossRefGoogle ScholarPubMed
Sinzger, C., Schmidt, K., Knapp, J.et al. (1999). Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. J. Gen. Virol., 80, 2867–2877.CrossRefGoogle ScholarPubMed
Sinzger, C., Kahl, M., Laib, K.et al. (2000). Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J. Gen. Virol., 81(Pt 12), 3021–3035.CrossRefGoogle ScholarPubMed
Skaletskaya, A., Bartle, L. M., Chittenden, T., McCormick, A. L., Mocarski, E. S., and Goldmacher, V. S. (2001). A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl Acad. Sci. USA, 98, 7829–7834.CrossRefGoogle ScholarPubMed
Slobbe-van Drunen, M. E., Hendrickx, A. T., Vossen, R. C., Speel, E. J., Dam-Mieras, M. C., and Bruggeman, C. A. (1998). Nuclear import as a barrier to infection of human umbilical vein endothelial cells by human cytomegalovirus strain AD169. Virus Res., 56, 149–156.CrossRefGoogle ScholarPubMed
Slobedman, B. and Mocarski, E. S. (1999). Quantitative analysis of latent human cytomegalovirus. J. Virol., 73, 4806–4812.Google ScholarPubMed
Smiley, M. L., Mar, E. C., and Huang, E. S. (1988). Cytomegalovirus infection and viral-induced transformation of human endothelial cells. J. Med. Virol., 25, 213–226.CrossRefGoogle ScholarPubMed
Smith, J. A. and Pari, G. S. (1995). Expression of human cytomegalovirus UL36 and UL37 genes is required for viral DNA replication. J. Virol., 69, 1925–1931.Google Scholar
Smith, M. A., Sundaresan, S., Mohanakumar, T.et al. (1998). Effect of development of antibodies to HLA and cytomegalovirus mismatch on lung transplantation survival and development of bronchiolitis obliterans syndrome. J. Thorac. Cardiovasc. Surg., 116, 812–820.CrossRefGoogle ScholarPubMed
Söderberg, C., Larsson, S., Bergstedt-Lindqvist, S., and Moller, E. (1993). Definition of a subset of human peripheral blood mononuclear cells that are permissive to human cytomegalovirus infection. J. Virol., 67, 3166–3175.Google ScholarPubMed
Söderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997a). Interferon-gamma and tumor necrosis factor-alpha specifically induce formation of cytomegalovirus-permissive monocyte-derived macrophages that are refractory to the antiviral activity of these cytokines. J. Clin. Invest., 100, 3154–3163.CrossRefGoogle Scholar
Söderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997b). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell, 91, 119–126.CrossRefGoogle Scholar
Söderberg-Naucler, C., Streblow, D. N., Fish, K. N., Allan-Yorke, J., Smith, P. P., and Nelson, J. A. (2001). Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J. Virol., 75, 7543–7554.CrossRefGoogle ScholarPubMed
Speir, E., Modali, R., Huang, E. S., Leon, M. B., Shawl, F., Finkel, T., and Epstein, S. E. (1994). Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science, 265, 391–394.CrossRefGoogle ScholarPubMed
Spencer, J. V., Lockridge, K. M., Barry, P. A.et al. (2002). Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J. Virol., 76, 1285–1292.CrossRefGoogle ScholarPubMed
Stein, J., Volk, H. D., Liebenthal, C., Kruger, D. H., and Prosch, S. (1993). Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J. Gen. Virol., 74, 2333–2338.CrossRefGoogle ScholarPubMed
Taylor-Wiedeman, J., Sissons, J. G., Borysiewicz, L. K., and Sinclair, J. H. (1991). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol., 72, 2059–2064.CrossRefGoogle ScholarPubMed
Taylor-Wiedeman, J., Hayhurst, G. P., Sissons, J. G., and Sinclair, J. H. (1993). Polymorphonuclear cells are not sites of persistence of human cytomegalovirus in healthy individuals. J. Gen. Virol., 74, 265–268.CrossRefGoogle Scholar
Taylor-Wiedeman, J., Sissons, P., and Sinclair, J. (1994). Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J. Virol., 68, 1597–1604.Google ScholarPubMed
Tegtmeier, G. E. (1989). Posttransfusion cytomegalovirus infections. Arch. Pathol. Lab. Med., 113, 236–245.Google ScholarPubMed
Tegtmeier, G. E. (1986). Transfusion-transmitted cytomegalovirus infections: significance and control. Vox Sang., 51(Suppl 1), 22–30.CrossRefGoogle ScholarPubMed
Tolkoff-Rubin, N. E. and Rubin, R. H. (1994). The interaction of immunosuppression with infection in the organ transplant recipient. Transpl. Proc., 26, 16–19.Google ScholarPubMed
Torok-Storb, B., Simmons, P., Khaira, D., Stachel, D., and Myerson, D. (1992). Cytomegalovirus and marrow function. Ann. Hematol., 64(Suppl), A128–A131.CrossRefGoogle ScholarPubMed
Turner, R. R., Beckstead, J. H., Warnke, R. A., and Wood, G. S. (1987). Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am. J. Clin. Pathol., 87, 569–575.CrossRefGoogle ScholarPubMed
von Laer, D., Meyer-Koenig, U., Serr, A.et al. (1995a). Detection of cytomegalovirus DNA in CD34+ cells from blood and bone marrow. Blood, 86, 4086–4090.Google Scholar
von Laer, D., Serr, A., Meyer-Konig, U., Kirste, G., Hufert, F. T., and Haller, O. (1995b). Human cytomegalovirus immediate early and late transcripts are expressed in all major leukocyte populations in vivo [see comments]. J. Infect. Dis., 172, 365–370.CrossRefGoogle Scholar
Wagner, M., Ruzsics, Z., and Koszinowski, U. H. (2002). Herpesvirus genetics has come of age. Trends Microbiol., 10, 318–324.CrossRefGoogle ScholarPubMed
Waldman, W. J. and Knight, D. A. (1996). Cytokine-mediated induction of endothelial adhesion molecule and histocompatibility leukocyte antigen expression by cytomegalovirus-activated T cells. Am. J. Pathol., 148, 105–119.Google ScholarPubMed
Waldman, W. J., Knight, D. A., Huang, E. H., and Sedmak, D. D. (1995). Bidirectional transmission of infectious cytomegalovirus between monocytes and vascular endothelial cells: an in vitro model. J. Infect. Dis., 171, 263–272.CrossRefGoogle Scholar
Wang, D. and Shenk, T. (2005a). Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J. Virol., 79, 10330–10338.CrossRefGoogle Scholar
Wang, D. and Shenk, T. (2005b). Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl. Acad. Sci. USA, 102, 18153–18158.CrossRefGoogle Scholar
White, K. L., Slobedman, B., and Mocarski, E. S. (2000). Human cytomegalovirus latency-associated protein pORF94 is dispensable for productive and latent infection. J. Virol., 74, 9333–9337.CrossRefGoogle ScholarPubMed
Wiley, C. A. and Nelson, J. A. (1988). Role of human immunodeficiency virus and cytomegalovirus in AIDS encephalitis. Am. J. Pathol., 133, 73–81.Google ScholarPubMed
Yamashiroya, H. M., Ghosh, L., Yang, R., and Robertson, A. L. (1988). Herpesviredae in the coronary arteries and aorta of young trauma victims. Am. J. Path., 130, 71–79.Google ScholarPubMed
Yu, D., Smith, G. A., Enquist, L. W., and Shenk, T. (2002). Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J. Virol., 76, 2316–2328.CrossRefGoogle ScholarPubMed
Zhang, H., Fu, S., Busch, A., Chen, F., Qin, L., and Bromberg, J. S. (2001). Identification of TNF-alpha-sensitive sites in HCMVie1 promoter. Exp. Mol. Pathol., 71, 106–114.CrossRefGoogle ScholarPubMed
Zhu, H., Shen Y., and Shenk T. (1995). Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J. Virol., 69, 7960–7970.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×