Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T12:05:09.281Z Has data issue: false hasContentIssue false

46 - HHV-6A, 6B, and 7: pathogenesis, host response, and clinical disease

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7

Published online by Cambridge University Press:  24 December 2009

Yasuko Mori
Affiliation:
Department of Microbiology, Osaka University Graduate School of Medicine, Japan
Koichi Yamanishi
Affiliation:
Department of Microbiology, Osaka University Graduate School of Medicine, Japan
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Human herpesvirus 6(HHV-6) is a human pathogen of emerging clinical significance. HHV-6 was first isolated from patients with lymphoproliferative disorders in 1986 (Salahuddin et al., 1986). HHV-6 isolates are classified into two groups as variants A(HHV-6A) and variant B(HHV-6B) (Schirmer et al., 1991. The two variants are closely related but show consistent differences in biological, immunological, epidemiological, and molecular properties. HHV-6B is the major causative agent of exanthem subitum (ES) (Yamanishi et al., 1988), but no clear disease has yet been associated with HHV-6A.

Human herpesvirus 7 (HHV-7) was isolated in 1990 from a healthy individual whose cells were stimulated with antibody against CD3 and then incubated with interleukin-2 (Frenkel et al., 1990). This virus is one of the causative agents of ES (Tanaka et al., 1994). Therefore, HHV-6 and HHV-7 are also called Roseolovirus. HHV-6 and HHV-7 are ubiquitous, and more than 90% of adults have antibody to both viruses. These viruses have extensive homology and belong to the β-herpesvirus subfamily.

The genome of HHV-6A is 159 321 bp in size, has a base composition of 43% G + C, and contains 119 open reading frames. The overall structure is 143 kb bounded by 8 kb of direct repeats, DRL (left) and DRR (right), containing 0.35 kb of terminal and junctional arrays of human telomere-like simple repeats (Gompels et al., 1995). A total of 115 potential open reading frames (ORFs) were identified within the 161 573-bp contiguous sequence of the entire HHV-6B genome (HST) (Isegawa et al., 1999).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 833 - 842
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akashi, K., Eizuru, Y., Sumiyoshi, Y.et al. (1993). Brief report: severe infectious mononucleosis-like syndrome and primary human herpesvirus 6 infection in an adult [see comments]. N. Engl. J. Med., 329(3), 168–171.CrossRefGoogle Scholar
Appleton, A. L., Sviland, L., Peiris, J. S.et al. (1995). Human herpes virus-6 infection in marrow graft recipients: role in pathogenesis of graft-versus-host disease. Newcastle upon Tyne Bone Marrow Transport Group. Bone Marrow Transpl, 16(6), 777–782.Google ScholarPubMed
Asano, Y., Yoshikawa, T., Kajita, Y.et al. (1992). Fatal encephalitis/encephalopathy in primary human herpesvirus-6 infection. Arch. Dis. Child., 67(12), 1484–1485.CrossRefGoogle ScholarPubMed
Asano, Y., Yoshikawa, T., Suga, S.et al. (1990). Fatal fulminant hepatitis in an infant with human herpesvirus-6 infection [letter]. Lancet, 335(8693), 862–863.CrossRefGoogle Scholar
Atedzoe, B. N., Ahmad, A., and Menezes, J. (1997). Enhancement of natural killer cell cytotoxicity by the human herpesvirus-7 via IL-15 induction. J. Immunol., 159(10), 4966–4972.Google ScholarPubMed
Black, J. B., Inoue, N., Kite-Powel, K.et al. (1993). Frequent isolation of human herpesvirus 7 from saliva. Virus Res., 29(1), 91–98.CrossRefGoogle ScholarPubMed
Cardinali, G., Gentile, M., Cirone, M.et al. (1998). Viral glycoproteins accumulate in newly formed annulate lamellae following infection of lymphoid cells by human herpesvirus 6. J. Virol., 72(12), 9738–9746.Google ScholarPubMed
Carrigan, D. R. and Knox, K. K. (1995). Bone marrow suppression by human herpesvirus-6: comparison of the A and B variants of the virus [letter; comment]. Blood, 86(2), 835–836.Google Scholar
Caruso, A., Favilli, F., Rotola, A.et al. (2003). Human herpesvirus-6 modulates RANTES production in primary human endothelial cell cultures. J. Med. Virol., 70(3), 451–458.CrossRefGoogle ScholarPubMed
Cermelli, C., Pietrosemoli, P., Meacci, M.et al. (1997). SupT-1: a cell system suitable for an efficient propagation of both HHV-7 and HHV-6 variants A and B. New Microbiol., 20(3), 187–196.Google ScholarPubMed
Challoner, P. B., Smith, K. T., Parker, J. D.et al. (1995). Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc. Natl Acad. Sci. USA, 92(16), 7440–7444.CrossRefGoogle ScholarPubMed
Cirone, M., Campadelli Fiume, G., Foa-Tomasi, L.et al. (1994). Human herpesvirus 6 envelope glycoproteins B and H-L complex are undetectable on the plasma membrane of infected lymphocytes. AIDS Res. Hum. Retroviruses, 10(2), 175–179.CrossRefGoogle ScholarPubMed
Coates, A. R. and Bell, J. (1998). HHV-6 and multiple sclerosis. Nat. Med., 4(5), 537–538.CrossRefGoogle ScholarPubMed
Cone, R. W., Hackman, R. C., Huang, M. L.et al. (1993). Human herpesvirus 6 in lung tissue from patients with pneumonitis after bone marrow transplantation [see comments]. N. Engl. J. Med., 329(3), 156–161.CrossRefGoogle Scholar
Cone, R. W., Huang, M. L., Corey, L.et al. (1999). Human herpesvirus 6 infections after bone marrow transplantation: clinical and virologic manifestations [In Process Citation]. J. Infect. Dis., 179(2), 311–318.CrossRefGoogle Scholar
Dockrell, D. H. (2003). Human herpesvirus 6: molecular biology and clinical features. J. Med. Microbiol., 52(Pt 1), 5–18.CrossRefGoogle ScholarPubMed
Dominguez, G., Dambaugh, T. R., Stamey, F. R.et al. (1999). Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J. Virol., 73(10), 8040–8052.Google ScholarPubMed
Drobyski, W. R., Dunne, W. M., Burd, E. M.et al. (1993). Human herpesvirus-6 (HHV-6) infection in allogeneic bone marrow transplant recipients: evidence of a marrow-suppressive role for HHV-6 in vivo. J. Infect. Dis., 167(3), 735–739.CrossRefGoogle ScholarPubMed
Drobyski, W. R., Knox, K. K., Majewski, D.et al. (1994). Brief report: fatal encephalitis due to variant B human herpesvirus-6 infection in a bone marrow-transplant recipient. N. Engl. J. Med., 330(19), 1356–1360.CrossRefGoogle Scholar
Flamand, L., Gosselin, J., and Petlett, P. E. (1991). Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J. Virol., 65(9), 5105–5110.Google Scholar
Flamand, L., Stefanescu, I., and Menezes, J. (1996). Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J. Clin. Invest., 97(6), 1373–1381.CrossRefGoogle ScholarPubMed
Tomasi, Foa L., Boscaro, A., Eaeta, S.et al. (1991). Monoclonal antibodies to gp100 inhibit penetration of human herpesvirus 6 and polykaryocyte formation in susceptible cells. J. Virol., 65(8), 4124–4129.Google Scholar
Fox, J. D., Briggs, M., Ward, P. A.et al. (1990). Human herpesvirus 6 in salivary glands [see comments]. Lancet, 336(8715), 590–593.CrossRefGoogle Scholar
Frenkel, N., Schirmer, E. C., Wyatt, L. S.et al. (1990). Isolation of a new herpesvirus from human CD4+ T cells. Proc. Natl Acad. Sci. USA, 87(2), 748–752.CrossRefGoogle ScholarPubMed
Furukawa, M., Yasukawa, M., Yakushijin, Y.et al. (1994). Distinct effects of human herpesvirus 6 and human herpesvirus 7 on surface molecule expression and function of CD4+ T cells. J. Immunol., 152(12), 5768–5775.Google ScholarPubMed
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209(1), 29–51.CrossRefGoogle ScholarPubMed
Gosselin, J., TomoIu, A., Gallo, R. C.et al. (1999). Interleukin-15 as an activator of natural killer cell-mediated antiviral response. Blood, 94(12), 4210–4219.Google ScholarPubMed
Greenstone, H. L., Santoro, F., Lusso, P, et al. (2002). Human herpesvirus 6 and measles virus employ distinct CD46 domains for receptor function. J. Biol. Chem., 277(42), 39112–39118.CrossRefGoogle ScholarPubMed
Griffiths, P. D., Ait-Khaled, M., Bearcroft, C. P.et al. (1999). Human herpesviruses 6 and 7 as potential pathogens after liver transplant: prospective comparison with the effect of cytomegalovirus. J. Med. Virol., 59(4), 496–501.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Griffiths, P. D., Clark, D. A., and Emery, V. C. (2000). Betaherpesviruses in transplant recipients [In Process Citation]. J. Antimicrob. Chemother., 45(Suppl T3), 29–34.CrossRefGoogle Scholar
Grivel, J. C., Ito, Y., Faga, G.et al. (2001). Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6. Nat. Med., 7(11), 1232–1235.CrossRefGoogle Scholar
Grivel, J. C., Santoro, F., Chen, S.et al. (2003). Pathogenic effects of human herpesvirus 6 in human lymphoid tissue ex vivo. J. Virol., 77(15), 8280–8289.CrossRefGoogle ScholarPubMed
Hall, C. B., Caserta, M. T., Schnabel, K. C.et al. (1998). Persistence of human herpesvirus 6 according to site and variant: possible greater neurotropism of variant A. Clin. Infect. Dis., 26(1), 132–137.CrossRefGoogle ScholarPubMed
Ichimi, R., Jin-no, T., and Ito, M. (1999). Induction of apoptosis in cord blood lymphocytes by HHV-6 [In Process Citation]. J. Med. Virol., 58(1), 63–68.3.0.CO;2-C>CrossRefGoogle Scholar
Inoue, Y., Yasukawa, M., and Fugita, S. (1997). Induction of T-cell apoptosis by human herpesvirus 6. J. Virol., 71(5), 3751–3759.Google ScholarPubMed
Isegawa, Y., Mukai, T., Nakano, K.et al. (1999). Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J. Virol., 73(10), 8053–8063.Google ScholarPubMed
Isomura, H., Yamada, M., Namba, H.et al. (1997). Suppressive effects of human herpesvirus 6 on in vitro colony formation of hematopoietic progenitor cells. J. Med. Virol., 52(4), 406–412.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Isomura, H., Yoshida, M., Namba, H.et al. (2000). Suppressive effects of human herpesvirus-6 on thrombopoietin-inducible megakaryocytic colony formation in vitro. J. Gen. Virol., 81(Pt 3), 663–673.CrossRefGoogle ScholarPubMed
Isomura, H., Yoshida, M., Namba, H.et al. (2003). Interaction of human herpesvirus 6 with human CD34 positive cells. J. Med. Virol., 70(3), 444–450.CrossRefGoogle ScholarPubMed
Kempf, W., Adams, V., Mirandola, P.et al. (1998). Persistence of human herpesvirus 7 in normal tissues detected by expression of a structural antigen. J. Infect. Dis., 178(3), 841–845.CrossRefGoogle ScholarPubMed
Kikuta, H., Nakane, A., Lu, H.et al. (1990). Interferon induction by human herpesvirus 6 in human mononuclear cells. J. Infect. Dis., 162(1), 35–38.CrossRefGoogle ScholarPubMed
Kurata, T., Iwasaki, T., Sata, T.et al. (1990). Viral pathology of human herpesvirus 6 infection. Adv. Exp. Med. Biol., 278, 39–47.CrossRefGoogle ScholarPubMed
Leahy, M. A., Krejci, S. M., Friednash, M.et al. (1993). Human herpesvirus 6 is present in lesions of Langerhans cell histiocytosis. J. Invest. Dermatol., 101(5), 642–645.CrossRefGoogle ScholarPubMed
Levine, P. H., Jahan, N., Murari, P.et al. (1992). Detection of human herpesvirus 6 in tissues involved by sinus histiocytosis with massive lymphadenopathy (Rosai–Dorfman disease). J. Infect. Dis., 166(2), 291–295.CrossRefGoogle Scholar
Liu, D. X., Gompels, U. A., Nicholas, J.et al. (1993). Identification and expression of the human herpesvirus 6 glycoprotein H and interaction with an accessory 40K glycoprotein. J. Gen. Virol., 74(Pt 9), 1847–1857.CrossRefGoogle ScholarPubMed
Luppi, M., Barozzi, P., Maiorana, A.et al. (1994). Human herpesvirus 6 infection in normal human brain tissue [letter]. J. Infect. Dis., 169(4), 943–944.CrossRefGoogle Scholar
Lusso, P., Malnati, M., de Mania, A.et al. (1991a). Productive infection of CD4+ and CD8+ mature human T cells populations and clones by human herpesvirus 6. Transcriptional down-regulation of CD3. J. Immunol., 147(2), 685–691.Google Scholar
Lusso, P., Maria, A., Malnati, M.et al. (1991a). Induction of CD4 and susceptibility to HIV-1 infection in human CD8+ T lymphocytes by human herpesvirus 6. Nature, 349(6309), 533–535.CrossRefGoogle Scholar
Lusso, P., Secchiero, P., Crowley, R. W.et al. (1994). CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc. Natl Acad. Sci. USA, 91(9), 3872–3876.CrossRefGoogle ScholarPubMed
Lusso, P., Garzino-Demo, A., Crowley, R. W.et al. (1995). Infection of gamma/delta T lymphocytes by human herpesvirus 6: transcriptional induction of CD4 and susceptibility to HIV infection. J. Exp. Med., 181(4), 1303–1310.CrossRefGoogle ScholarPubMed
Mori, Y., Seya, T., Huang, H. L.et al. (2002). Human herpesvirus 6 variant A but not variant B induces fusion from without in a variety of human cells through a human herpesvirus 6 entry receptor, CD46. J. Virol., 76(13), 6750–6761.CrossRefGoogle ScholarPubMed
Mori, Y., Akkapaiboon, P., Yang, X.et al. (2003a). The human herpesvirus 6 U100 gene product is the third component of the gH-gL glycoprotein complex on the viral envelope. J. Virol., 77(4), 2452–2458.CrossRefGoogle Scholar
Mori, Y., Yang, X., Akkapaiboon, P.et al. (2003b). Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46. J. Virol., 77(8), 4992–4999.CrossRefGoogle Scholar
Pfeiffer, B., Thomson, B., and Chadran, B. (1995). Identification and characterization of a cDNA derived from multiple splicing that encodes envelope glycoprotein gp105 of human herpesvirus 6. J. Virol., 69(6), 3490–3500.Google ScholarPubMed
Rodrigues, G. A. (1999). Human herpes virus 6 fatal encephalitis in a bone marrow recipient. Scand. J. Infect. Dis., 31, 313–315.Google Scholar
Salahuddin, S. Z., Ablashi, D. V., Maskham, P. D.et al. (1986). Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science, 234(4776), 596–601.CrossRefGoogle ScholarPubMed
Santoro, F., Greenstone, H. L., Insinga, A.et al. (2003). Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46. J. Biol. Chem., 278(28), 25964–25969.CrossRefGoogle ScholarPubMed
Santoro, F. M., Kennedy, P. E., Locatelli, G.et al. (1999). CD46 is a cellular receptor for human herpesvirus 6 [In process citation]. Cell, 99(7), 817–827.CrossRefGoogle Scholar
Schirmer, E. C., Wyatt, L. S., Yamanishi, K.et al. (1991). Differentiation between two distinct classes of viruses now classified as human herpesvirus 6. Proc. Natl Acad. Sci. USA, 88(13), 5922–5926.CrossRefGoogle ScholarPubMed
Secchiero, P., Flamand, L., Gibellini, D.et al. (1997a). Human herpesvirus 7 induces CD4(+) T-cell death by two distinct mechanisms: necrotic lysis in productively infected cells and apoptosis in uninfected or nonproductively infected cells. Blood, 90(11), 4502–4512.Google Scholar
Secchiero, P., Sun, D., Vico, A. L.et al. (1997b). Role of the extracellular domain of human herpesvirus 7 glycoprotein B in virus binding to cell surface heparan sulfate proteoglycans. J. Virol., 71(6), 4571–4580.Google Scholar
Secchiero, P., Bertolaso, L., Casareto, L.et al. (1998a). Human herpesvirus 7 infection induces profound cell cycle perturbations coupled to disregulation of cdc2 and cyclin B and polyploidization of CD4(+) T-cells. Blood, 92(5), 1685–1696.Google Scholar
Secchiero, P., Zella, D., Barabitsskaja, O.et al. (1998b). Progressive and persistent downregulation of surface CXCR4 in CD4(+) T cells infected with human herpesvirus 7. Blood, 92(12), 4521–4528.Google Scholar
Secchiero, P., Mirandola, P., Zella, D.et al. (2001). Human herpesvirus 7 induces the functional up-regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) coupled to TRAIL-R1 down-modulation in CD4(+) T cells. Blood, 98(8), 2474–24781.CrossRefGoogle ScholarPubMed
Seya, T., Hara, T., Matsumoto, M.et al. (1990). Complement-mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46). J. Exp. Med., 172(6), 1673–1680.CrossRefGoogle Scholar
Singh, N., Carrigan, D. R., Gayowski, T.et al. (1995). Variant B human herpesvirus-6 associated febrile dermatosis with thrombocytopenia and encephalopathy in a liver transplant recipient [published erratum appears in Transplantation 1996 Feb 27;61(4):677]. Transplantation, 60(11), 1355–1357.Google Scholar
Singh, N., Bentlejewski, C., Carrigan, D. R.et al. (2002a). Persistent lack of human herpesvirus-6 specific T-helper cell response in liver transplant recipients. Transpl. Infect. Dis., 4(2), 59–63.CrossRefGoogle Scholar
Singh, N., Husain, S., Carrigan, D. R.et al. (2002b). Impact of human herpesvirus-6 on the frequency and severity of recurrent hepatitis C virus hepatitis in liver transplant recipients. Clin. Transpl., 16(2), 92–96.CrossRefGoogle Scholar
Skrincosky, D., Hocknell, P., Whetter, L.et al. (2001). Identification and analysis of a novel heparin-binding glycoprotein encoded by human herpesvirus 7 [in process citation]. J. Virol., 74(10), 4530–4540.CrossRefGoogle Scholar
Smith, A., Santoro, F., di Lullo, G. et al. (2003). Selective suppression of IL-12 production by human herpesvirus 6. Blood.CrossRef
Soldan, S. S., Berti, R., Salem, N. et al. (1997). Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased
Soldan, S. S., Berti, R., Salem, N.et al. (1997). IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat. Med., 3(12), 1394–1397.CrossRefGoogle ScholarPubMed
Suzuki, Y., Inagi, R., Acono, T.et al. (1998). Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch. Dermatol., 134(9), 1108–1112.CrossRefGoogle ScholarPubMed
Tajiri, H., Nose, O., Baba, K.et al. (1990). Human herpesvirus-6 infection with liver injury in neonatal hepatitis [letter]. Lancet, 335(8693), 863.CrossRefGoogle Scholar
Takahashi, K., Sonoda, S., Higashi, K.et al. (1989). Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J. Virol., 63(7), 3161–3163.Google ScholarPubMed
Takahashi, K., Segal, E., Kondo, T.et al. (1992). Interferon and natural killer cell activity in patients with exanthem subitum. Pediatr. Infect. Dis. J., 11(5), 369–373.CrossRefGoogle ScholarPubMed
Tanaka, K., Kondo, T., Torigoe, S.et al. (1994). Human herpesvirus 7: another causal agent for roseola (exanthem subitum). J. Pediatr., 125(1), 1–5.CrossRefGoogle Scholar
Tohyama, M., Yahata, Y., Yasukawa, M.et al. (1998). Severe hypersensitivity syndrome due to sulfasalazine associated with reactivation of human herpesvirus 6. Arch. Dermatol., 134(9), 1113–1117.CrossRefGoogle ScholarPubMed
Torigoe, S., Koide, W., Yamada, M.et al. (1996). Human herpesvirus 7 infection associated with central nervous system manifestations. J. Pediatr., 129(2), 301–305.CrossRefGoogle ScholarPubMed
Tsujimura, H., Iseki, T., Date, Y.et al. (1998). Human herpesvirus-6 encephalitis after bone marrow transplantation: magnetic resonance imaging could identify the involved sites of encephalitis [letter]. Eur. J. Haematol., 61(4), 284–285.CrossRefGoogle Scholar
Wyatt, L. S. and Frenkel, N. (1992). Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. J. Virol., 66(5), 3206–3209.Google ScholarPubMed
Yamanishi, K., Okuno, T.et al. (1988). Identification of human herpesvirus-6 as a causal agent for exanthem subitum [see comments]. Lancet, 1(8594), 1065–1067.CrossRefGoogle Scholar
Yasukawa, M., Inoue, Y., Ohminami, H.et al. (1998). Apoptosis of CD4+ T lymphocytes in human herpesvirus-6 infection. J. Gen. Virol., 79(Pt 1), 143–147.CrossRefGoogle ScholarPubMed
Yasukawa, M., Hasegawa, A., Sakai, I.et al. (1999). Down-regulation of CXCR4 by human herpesvirus 6 (HHV-6) and HHV-7. J. Immunol., 162(9), 5417–5422.Google ScholarPubMed
Yoshikawa, T., Asano, Y., Kobayashi, I.et al. (1993). Exacerbation of idiopathic thrombocytopenic purpura by primary human herpesvirus 6 infection. Pediatr. Infect. Dis. J., 12(5), 409–410.CrossRefGoogle ScholarPubMed
Zhang, Y., Hatse, S., Clerq, E.et al. (2000). CXC-chemokine receptor 4 is not a coreceptor for human herpesvirus 7 entry into CD4(+) T cells. J. Virol., 74(4), 2011–2016.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×