Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T01:59:57.472Z Has data issue: false hasContentIssue false

26 - Contaminant Chronologies from Hudson River Sedimentary Records

Published online by Cambridge University Press:  06 January 2010

Richard F. Bopp
Affiliation:
Department of Earth and Environmental Sciences Rensselaer Polytechnic Institute
Steven N. Chillrud
Affiliation:
Lamont-Doherty Earth Observatory of Columbia University
Edward L. Shuster
Affiliation:
Department of Earth and Environmental Sciences Rensselaer Polytechnic Institute
H. James Simpson
Affiliation:
Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University
Jeffrey S. Levinton
Affiliation:
State University of New York, Stony Brook
Get access

Summary

abstract Analyses of sections from dated sediment cores have been used to construct contaminant chronologies in the Hudson River Basin and the New York/New Jersey Harbor complex. Dating information was derived primarily from radionuclide analyses. The known input history of 137Cs, a radionuclide derived from global fallout and nuclear reactor discharges, places important constraints on estimates of net sediment accumulation rates. 7Be, a natural radionuclide with a 53 day half-life is detectable in surficial samples with a significant component of particles deposited within a year of core collection. Persistent contaminants analyzed in dated Hudson sediments include PCBs, dioxins, chlorinated hydrocarbon pesticides, and trace metals such as copper, lead, zinc, cadmium, chromium, and mercury. The combination of temporal and geographic information from these analyses is most valuable and provides a general basinwide perspective on the significant improvement in contaminant levels in the Hudson over the past several decades. It has also allowed us to trace the influence of several major contamination incidents in the basin, including PCB and trace metal inputs to the Upper Hudson River and dioxin and DDT discharges to the Lower Passaic River.

Introduction

Over the past several decades, many thousands of sediment samples have been collected from the Hudson River, its tributaries and the New York/New Jersey (NY/NJ) Harbor complex (Fig. 26.1). This chapter will focus on insights gained from analyses on a very select subset of those samples – sections of dated sediment cores.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderton, D. H. M. 1985. Sediments, in Historical Monitoring, Monitoring and Assessment Research Center, MARC Report No. 31, London. pp. 1–95
Baker, J. E., Bohlen, W. F., Bopp, R., Brownawell, B., Collier, T. K., Farley, K. J., Geyer, W. R., and Nairn, R. 2001. PCBs in the Hudson River: The Science Behind the Controversy. White Paper prepared for the Hudson River Foundation, released October 29, 2001Google Scholar
Bedard, D. L., and Quensen, III, J. F. 1995. Microbial reductive dechlorination of polychlorinated biphenyls, in Young, L. Y. and Cerniglia, C. E. (eds.), Microbial Transformation and Degradation of Toxic Organic Chemicals. New York: Wiley-Liss, Inc. pp. 127–216Google Scholar
Benoit, G., Wang, E. X., Nieder, W. C., Levandowsky, M., and Breslin, V. T. 1999. Sources and history of heavy metal contamination and sediment deposition in Tivoli South Bay, Hudson River, New York. Estuaries 22:167–78CrossRefGoogle Scholar
Bopp, R. F. 1979. “The geochemistry of polychlorinated biphenyls in the Hudson River,” Ph. D. dissertation, Columbia University, New York
Bopp, R. F., Butler, J. A., Chaky, D. A., Shuster, E. L., Chillrud, S. N., and Estabrooks, F. D. 1996. Geographic and temporal distribution of particle-associated contaminants in sediments of the Hudson River Basin. Abstract, Society of Environmental Toxicology and Chemistry – 17th Annual Meeting, Washington, D.C.
Bopp, R. F., Chillrud, S. N., Shuster, E. L., Simpson, H. J., and Estabrooks, F. D. 1998. Trends in chlorinated hydrocarbon levels in Hudson River Basin sediments. Environmental Health Perspectives 106(supplement 4):1075–81CrossRefGoogle ScholarPubMed
Bopp, R. F., Gross, M. L., Tong, H. Y., Simpson, H. J., Monson, S. J., Deck, B. L., and Moser, F. C. 1991. A major incident of dioxin contamination: Sediments of New Jersey estuaries. Environmental Science and Technology 25:951–56CrossRefGoogle Scholar
Bopp, R. F., and Simpson, H. J. 1989. Contamination of the Hudson River: The sediment record, in Contaminated Marine Sediments Assessment and Remediation. Washington, D.C., National Research Council, NAS, pp. 401–416Google Scholar
Bopp, R. F., Simpson, H. J., Chillrud, S. N., and Robinson, D. W. 1993. Sediment-derived chronologies of persistent contaminants in Jamaica Bay, New York. Estuaries 16:608–616CrossRefGoogle Scholar
Bopp, R. F., Simpson, H. J., Olsen, C. R., and Kostyk, N. 1981. Polychlorinated biphenyls in sediments of the tidal Hudson River, New York. Environmental Science and Technology 15:210–216CrossRefGoogle ScholarPubMed
Bopp, R. F., Simpson, H. J., Olsen, C. R., Trier, R. M., and Kostyk, N. 1982. Chlorinated hydrocarbons and radionuclide chronologies in sediments of the Hudson River and Estuary, New York. Environmental Science and Technology 16:666–76CrossRefGoogle Scholar
Bopp, R. F., and Walsh, D. C. 1994. Rivers and estuaries: A Hudson perspective, in Environmental Science in the Coastal Zone: Issues for Further Research. Washington, D.C. National Research Council, NAS, pp. 49–66Google Scholar
Bowen, H. J. M. 1979. Environmental Chemistry of the Elements. London: Academic PressGoogle Scholar
Bower, P. M., Simpson, H. J., Williams, S. C., and Li, Y. H. 1978. Heavy metals in the sediments of Foundry Cove, Cold Spring, New York. Environmental Science and Technology 12:683–7CrossRefGoogle Scholar
Brown, J. F. Jr., Wagner, R. E., Bedard, D. L., Brennan, M. J., Carnahan, J. C., May, R. J., and Tofflemire, T. J. 1984. PCB transformations in upper Hudson sediments. Northeastern Environmental Science 3:167–79Google Scholar
Bush, B., Shane, L. A., Wahlen, M., and Brown, M. P. 1987. Sedimentation of 74 PCB congeners in the Upper Hudson River. Chemosphere 16:733–44CrossRefGoogle Scholar
Chaky, D. A. 2003. “The geochemistry of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans in recent sediments of the New York Metropolitan Area,” Ph. D. dissertation, Rensselaer Polytechnic Institute, Troy, NY
Chaky, D. A., Chillrud, S. N., Bopp, R. F., Shuster, E. L., Estabrooks, F. D., and Swart, J. 1998. Chlorinated hydrocarbon contamination of the New York/New Jersey Metropolitan Area: The urban atmospheric influence. EOS, Transactions of the American Geophysical Union 79:S86Google Scholar
Chillrud, S. N. 1996. “Transport and fate of particle associated contaminants in the Hudson River basin,” Ph. D. dissertation, Columbia University, NY, 277 pp
Chillrud, S. N., Bopp, R. F., Ross, J. M., Chaky, D. A., Hemming, S., Shuster, E. L., Simpson, H. J., and Estabrooks, F. 2004. Radiogenic lead isotopes and time stratigraphy in the Hudson River, New York. Water, Air and Soil Pollution: Focus 4:469–82CrossRefGoogle Scholar
Chillrud, S. N., Bopp, R. F., Simpson, H. J., Ross, J., Shuster, E. L., Chaky, D. A., Walsh, D. C., Chin Choy, C., Tolley, L. R., and Yarme, A. 1999. Twentieth century atmospheric metal fluxes into Central Park Lake, New York City. Environmental Science and Technology 33(5):657–62CrossRefGoogle ScholarPubMed
Chillrud, S. N., Hemming, S., Shuster, E. L., Simpson, H. J., Bopp, R. F., Ross, J., Pederson, D. C., Chaky, D. A., Tolley, L.-R., and Estabrooks, F. D. 2003. Stable lead isotopes, contaminant metals and radionuclides in upper Hudson River sediment cores: Implications for improved stratigraphy and transport processes. Chemical Geology 199:53–70CrossRefGoogle Scholar
Cochran, J. K., and Aller, R. C. 1979. Particle reworking in sediments from the New York Bight apex: Evidence from 234Th/238U disequilibrium. Estuarine and Coastal Marine Science 9:739–47CrossRefGoogle Scholar
Diamond Shamrock Corporation. 1983. Report on Lister Avenue Facility. Prepared for the New Jersey Department of Environmental Protection, Trenton, NJ
Eckenfelder, Inc. 1991. State-Wide Soil Sampling Report, Ciba-Geigy Main Plant Site, Glens Falls, NY. Prepared for Hercules Inc., Wilmington, DE
Feng, H., Cochran, J. K., Hirschberg, D. J., and Wilson, R. E. 1998. Small-scale spatial variations of natural radionuclide and trace metal distributions in sediments from the Hudson River Estuary. Estuaries 21:263–80CrossRefGoogle Scholar
Ferguson, P. L., Bopp, R. F., Chillrud, S. N., Aller, R. C., and Brownawell, B. J. 2003. Biogeochemistry of nonlyphenol ethoxylates in urban estuarine sediments. Environmental Science and Technology 37:3499–3506CrossRefGoogle Scholar
Gibbs, R. J. 1994. Metals in the sediments along the Hudson River Estuary. Environment International 20:507–516CrossRefGoogle Scholar
Goeller, A. F. III. 1989. “Heavy metals and radionuclides in sediments of the Hackensack River, New Jersey,” Master's thesis, Rutgers University, Newark, NJ
Hay, A. 1982. The Chemical Scythe: Lessons of 2,4,5-T and Dioxin. New York: Plenum PressCrossRefGoogle Scholar
Keane, D. P. 1998. “Temporal trends of saturated and polycyclic aromatic hydrocarbons in the sediments of the Hudson and Passaic River systems,” Master's thesis, Rensselaer Polytechnic Institute, Troy, NY
Knutson, A. B., Klerks, P. L., and Levinton, J. S. 1987. The fate of metal contaminated sediments in Foundry Cove, New York. Environmental Pollution 45: 291–304CrossRefGoogle ScholarPubMed
Kroenke, A. E., Bopp, R. F., Chaky, D. A., Chillrud, S. N., Shuster, E. L., Estabrooks, F. D., and Swart, J. 1998. Atmospheric Deposition and Fluxes of Mercury in Remote and Urban Areas of the Hudson River Basin, Abstract, EOS, Transactions of the American Geophysical Union 79:S86Google Scholar
McNulty, A. K. 1997. “In situ anaerobic dechlorination of PCBs in Hudson River sediments,” Master's thesis, Rensselaer Polytechnic Institute
National Oceanic and Atmospheric Administration. 1988. National Status and Trends Program – A summary of selected data on chemical contaminants in sediments collected during 1984, 1985, 1986, and 1987. NOAA Technical Memo. NOS OMA 44, Rockville, MD
NATO. 1988. International toxicity equivalency factor (I-tef) method of risk assessment for complex mixtures of dioxins and related compounds, North Atlantic Treaty Organization, Report Number 176
Olsen, C. R., Simpson, H. J., Bopp, R. F., Williams, S. C., Peng, T.-H., and Deck, B. L. 1978. A geochemical analysis of sediments and sedimentation in the Hudson Estuary. Journal of Sedimentary Petrology 48:401–418Google Scholar
Olsen, C. R., Simpson, H. J., Peng, T.-H., Bopp, R. F., and Trier, R. M. 1981. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson Estuary sediments. Journal of Geophysical Research 86:11020–28CrossRefGoogle Scholar
O'Malley, V. P., Abrajano, T. A. Jr., and Hellou, J. 1996. Stable carbon isotopic apportionment of individual polycyclic aromatic hydrocarbons in St. John's Harbour, Newfoundland. Environmental Science and Technology 30:634–9CrossRefGoogle Scholar
Perry, E. A., Bopp, R., Keane, D., and Abrajano, T. A. 2002. History of polycyclic aromatic hydrocarbon (PAH) deposition in the New York Harbor. Abstract, Geological Society of America Northeastern Section – 37th Annual Meeting, Springfield, MAGoogle Scholar
Ritchie, J. C., and McHenry, J. R. 1990. Application of radioactive fallout 137Cs for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of Environmental Quality 19:215–33CrossRefGoogle Scholar
Robideau, R. M. 1997. “Sedimentation rates in Hudson River marshes as determined by radionuclide dating techniques,” Master's thesis, Rensselaer Polytechnic Institute, Troy, NY
Robinson, K. A. 2002. “Chlordane and DDT in the Hudson River Basin, Master's thesis,” Rensselaer Polytechnic Institute, Troy, NY
Rohmann, S. O. 1985. Tracing a River's Toxic Pollution: A Case Study of the Hudson. New York: Inform, Inc.Google Scholar
Servos, M. R. 1999. Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Quality Research Journal of Canada 34: 123–77Google Scholar
Sloan, R. J. 1999. Hudson River Fish and the PCB Perspective. Presentation to the NRC Committee on Remediation of PCB Contaminated Sediments, November 8, 1999, Albany, NYGoogle Scholar
Smith, S. L., MacDonald, D. D., Keenleyside, K. A., Ingersoll, C. G., and Field, L. J. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research 22:624–38CrossRefGoogle Scholar
TAMS Consultants, Inc. and Gradient Corporation. 1996. Database for the Hudson River PCBs Reassessment, Phase 2 Report, Further Site Characterization and Analysis Database Report, Volume 2A, U.S. Environmental Protection Agency, Washington, D.C.
USEPA. 2000. Hudson River PCBs Superfund Site, New York. Superfund proposed plan, EPA Region 2
Berg, M., Birnbaum, L., Bosveld, A. T. C., Brunström, B., Cook, P., Feeley, M., Giesy, J. P., Hanberg, A., Hasegawa, R., Kennedy, S. W., Kubiak, T., Larsen, J. C., Leeuwen, F. X. R., Liem, A. K. D., Nolt, C., Peterson, R. E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Wærn, F., and Zacharewski, T . 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, and PCDFs for humans and wildlife. Environmental Health Perspectives 106:775–92CrossRefGoogle ScholarPubMed
Williams, S. C., Simpson, H. J., Olsen, C. R., and Bopp, R. F. 1978. Sources of heavy metals in sediments of the Hudson River Estuary. Marine Chemistry 6:195–213CrossRefGoogle Scholar
Yan, B. 2004. “PAH sources and depositional history in sediments from the lower Hudson River basin,” Ph. D. dissertation, Rensselaer Polytechnic Institute, Troy, NY
Yan, B., Benedict, L. A., Chaky, D. A., Bopp, R. F., and Abrajano, T. A. 2004. Levels and patterns of PAH distribution in sediments of the New York/New Jersey Harbor complex. Northeastern Geology and Environmental Science 26(1&2):113–22Google Scholar
Zamek, E. 2002. “Trace metal chronologies in sediments of the upper Hudson and Mohawk Rivers,” Master's thesis, Rensselaer Polytechnic Institute, Troy, NY

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×