Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-15T05:15:00.094Z Has data issue: false hasContentIssue false

12 - Potential applications of fiber OPAs and OPOs

Published online by Cambridge University Press:  23 March 2010

Michel E. Marhic
Affiliation:
University of Wales, Swansea
Get access

Summary

Introduction

The potential for fiber OPAs and OPOs is based on some characteristic features that are not present in other types of optical amplifiers and oscillators. Specifically, the features that can be exploited are: (i) the availability of gain at essentially arbitrary wavelengths, limited only by the availability of the necessary pumps and of fibers with suitable nonlinearity, loss, and dispersion; (ii) the availability of an idler; (iii) the nearly instantaneous response of the gain to pump power variations; (iv) the all-fiber structure, which is capable of withstanding high powers.

In this chapter we will discuss the main applications that can be envisioned and describe the experiments that have been performed in some areas. For OPAs, the main areas of applications that have been envisioned so far are in optical communication and high-power wavelength conversion. We now discuss each of these areas in some depth.

OPAs in optical communication

This is the most advanced area, in part because of the availability of convenient fibers and pumps, developed for conventional communication systems. These have been exploited in recent years to demonstrate several applications of OPAs, naturally at wavelengths of interest for optical communication.

Amplification

The realization that fiber OPAs could exhibit gain bandwidths as large as or larger than those of erbium-doped fiber amplifiers (EDFAs), by the use of commercially available fibers and the watt-level pump powers that are now considered reasonable, sparked interest in their possible use in communication systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

“Interband wavelength conversion of 320 Gb/s (32×10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” Watanabe, S., Takeda, S., Chikama, T. In Proc. European Conf. on Optical Communication, 1998; vol. 3, pp. 83–7.
Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” Hasegawa, T, Inoue, K., Oda, K.IEEE Photon. Technol. Lett.; 1993; vol. 5, pp. 947–9.CrossRefGoogle Scholar
“Polarization-independent fiber optical parametric amplifier,” Wong, K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G. In Proc. OECC/IOOC 2001, Sydney, July 2001.
Polarization-independent one-pump fiber-optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G.IEEE Photon. Technol. Lett., 2002; vol. 14, pp. 1506–8.CrossRefGoogle Scholar
Fiber parametric amplifiers for wavelength band conversion,” Islam, M. N., Boyraz, O.IEEE J. Selected Topics in Quantum Electron.; 2002; vol. 8, pp. 527–37.CrossRefGoogle Scholar
“Polarization-independent two-pump fiber optical parametric amplifier with polarization diversity technique,” Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. In Proc. Optical Fiber Communication Conf., March 2006, Anaheim CA; paper OWT4.
Polarisation-independent phase conjugation of light-wave signals,” Jopson, R. M., Tench, R. E.Electron. Lett.; 1993; vol. 29, pp. 2216–7.CrossRefGoogle Scholar
Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” Inoue, K.J. Lightwave Technol.; 1994; vol. 12, pp. 1916–20.CrossRefGoogle Scholar
Polarization-independent two-pump fiber optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Uesaka, K., Kazovsky, L. G.IEEE Photon. Technol. Lett.; 2002; vol. 14, pp. 911–3.CrossRefGoogle Scholar
Polarization-independent, highly-efficient optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations,” Yamashita, S., Torii, K.IEICE Transactions on Electron.; 2003; vol. E86–C, pp. 1370–3.Google Scholar
Two-pump fiber parametric amplifiers,” Radic, S., McKinstrie, C. J. Optical Fiber Technology: Materials, Devices and Systems; 2003; vol. 9, pp. 7–23.CrossRefGoogle Scholar
Polarization independent, all-fiber phase conjugation incorporating inline fiber DFB lasers,” Yamashita, S., Set, S. Y., Laming, R. I.IEEE Photon. Technol. Lett.; 1998; vol. 10, pp. 1407–9.CrossRefGoogle Scholar
“Polarization dependent parametric gain in amplifiers with orthogonally multiplexed optical pumps,” Radic, S., Mckinstrie, C. J., Jopson, R. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; Technical Digest: vol. 2, paper ThK3, pp. 508–9.
Fiber-optic parametric amplifiers in the presence of polarization-mode dispersion and polarization-dependent loss,” Yaman, F., Lin, Q., Radic, S., Agrawal, G. P.J. Lightwave Technol.; 2006; vol. 24, pp. 3088–96.CrossRefGoogle Scholar
Raman-induced polarization-dependent gain in parametric amplifiers pumped with orthogonally polarized lasers,” Lin, Q., Yaman, F., Agrawal, G. PIEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 397–9.CrossRefGoogle Scholar
Combating dispersion with parametric amplifiers,” Li, R. D., Kumar, P., Kath, W. L., Kutz, J. N.IEEE Photon. Technol. Lett.; 1993; vol. 5, pp. 669–72.CrossRefGoogle Scholar
Long-distance pulse propagation in nonlinear optical fibers by using periodically spaced parametric amplifiers,” Kutz, J. N., Kath, W. L., Li, R. D., Kumar, P.Opt. Lett.; 1993; vol. 18, pp. 802–4.CrossRefGoogle ScholarPubMed
Pulse propagation in nonlinear optical fiber lines that employ phase-sensitive parametric amplifiers,” Kutz, J. N., Hile, C. V., Kath, W. L., Li, R. D., Kumar, P.J. Opt. Soc. Amer. B; 1994; vol. 11, pp. 2112–23.CrossRefGoogle Scholar
Reduction of quantum noise in soliton propagation by phase-sensitive amplification,” Deutsch, I. H., Abram, I.J. Opt. Soc. Amer. B; 1994; vol. 11, pp. 2303–13.CrossRefGoogle Scholar
All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Croussore, K., Kim, C., Li, G.Opt. Lett.; 2004; vol. 29, pp. 2357–9.CrossRefGoogle ScholarPubMed
Compensation of the soliton self-frequency shift with phase-sensitive amplifiers,” Goedde, C. G., Kath, W. L., Kumar, P.Opt. Lett.; 1994; vol. 19, pp. 2077–9.CrossRefGoogle ScholarPubMed
Parametric interaction of a modulated wave in a single-mode fiber,” Bar, Joseph I., Friesem, A. A., Waarts, R. G., Yaffee, H. H.Opt. Lett.; 1986; vol. 11, pp. 534–6.Google Scholar
Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Levandovsky, D., Vasilyev, M., Kumar, P.Pramana; 2001; vol. 56, pp. 281–5.CrossRefGoogle Scholar
“Phase-sensitive amplifier based on two-pump four-wave mixing in an optical fiber,” Takano, K., Tanemura, T., Kikuchi, K. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Tu1.3.6., pp. 23–4.
Phase-sensitive amplification in a fiber,” McKinstrie, C. J., Radic, S.Optics Express; 2004; vol. 12, pp. 4973–9.CrossRefGoogle ScholarPubMed
In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier,” Tang, R., Devgan, P., Voss, P. L., Grigoryan, V. S., Kumar, P.IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 1845–7.CrossRefGoogle Scholar
High-repetition-rate pulsed-pump fiber OPA for amplification of communication signals,” Kalogerakis, G., Shimizu, K., Marhic, M. E., Wong, K. K. Y., Uesaka, K., Kazovsky, L. G.J. Lightwave Technol.; 2006; vol. 24, pp. 3021–7.CrossRefGoogle Scholar
Influence of the pump spectrum on three-wave mixing parametric amplification,” Helmfrid, S., Arvidsson, G.J. Opt. Soc. Amer. B; 1991; vol. 8, pp. 2477–80.CrossRefGoogle Scholar
Continuous-wave fiber optical parametric wavelength converter with +40-dB conversion efficiency and 3.8-dB noise figure,” Wong, K. K. Y., Shimizu, K., Marhic, M. E., Uesaka, K., Kalogerakis, G., Kazovsky, L. G.Opt. Lett.; 2003; vol. 28, pp. 692–4.CrossRefGoogle ScholarPubMed
Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching,” Yamamoto, T., Nakazawa, M.IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 327–9.CrossRefGoogle Scholar
Wavelength conversion bandwidth in fiber based optical parametric amplifiers,” McKerracher, R. W., Blows, J. L., de Sterke, C. M., Optics Express; 2003; vol. 11, pp. 1002–7.CrossRefGoogle ScholarPubMed
Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Westlund, M., Han, J. sryd, Andrekson, P. A., Knudsen, S. N.Electronics Lett.; 2002; vol. 17; vol. 38, no. 2, pp. 85–6.CrossRefGoogle Scholar
“Narrow linewidth wavelength converter with 70 nm of signal tuning band using strain distribution to suppress SBS,” Marconi, J. D, Chavez Boggio, J. M., Fragnito, H. L. In Proc. 31st European Conf. on Optical Communications, September 2005, Glasgow; paper Mo4.5.6.
Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G.IEEE J. Select. Topics in Quantum Electron.; 2004; vol. 10; pp. 1133–41.CrossRefGoogle Scholar
Multiple wavelength conversion with gain by a high-repetition-rate pulsed-pump fiber optical parametric amplifier,” Kalogerakis, G., Marhic, M. E., Kazovsky, L. G.J. Lightwave Technol.; 2005; vol. 23, pp. 2954–60.CrossRefGoogle Scholar
Multiple-band bit-level switching in two-pump parametric devices,” Radic, S., McKinstrie, C. J., Jopson, R. M., Centani, J. C., Chraplyvy, A. R.IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 852–4.CrossRefGoogle Scholar
Selective suppression of idler spectral broadening in two-pump parametric architectures,” Radic, S., McKinstrie, C. J., Jopson, R. M., Centanni, J. C., Chraplyvy, A. R., Jorgensen, C. G., Brar, K., Headley, C.IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 673–5.CrossRefGoogle Scholar
Compensation for channel dispersion by nonlinear optical phase conjugation,” Yariv, A., Fekete, D., Pepper, D. M.Opt. Lett.; 1979; vol. 4, pp. 52–4.CrossRefGoogle ScholarPubMed
Cancellation of third-order nonlinear effects in amplified fiber links by dispersion compensation, phase conjugation, and alternating dispersion,” Marhic, M. E., Kagi, N., Chiang, T. K., Kazovsky, L. G.Opt. Lett.; 1995; vol. 20, pp. 863–5.CrossRefGoogle ScholarPubMed
Dispersion compensation with SBS-suppressed fibre phase conjugator using synchronized phase modulation,” Tani, M., Yamashita, S.Electron. Lett.; 2003; vol. 39, pp. 1375–7.CrossRefGoogle Scholar
“Wavelength division multiplexed transmission over standard single mode fiber using polarization insensitive signal conjugation in highly nonlinear optical fiber,” Radic, S., Jopson, R. M., McKinstrie, C. J., Gnauck, A. H., Chandrasekar, S., Centanni, J. C. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; paper PD12.
Parametric amplifier for mid-span phase conjugation with simultaneous compensation of fiber loss and chromatic dispersion at 10 Gb/s,” Boggio, J., , Chavez M., Guimaraes, A., Callegari, F. A., Marconi, J. D., Rocha, M. L., DeBarros, M. R. X., Fragnito, H. L.Microwave and Optical Technology Lett.; 2004; vol. 42, pp. 503–5.CrossRefGoogle Scholar
Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator,” Yamashita, S., Tani, M.IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 2096–8.CrossRefGoogle Scholar
Reduced timing jitter in dispersion-managed light-wave systems through parametric amplification,” Santhanam, J., Agrawal, G. P.J. Opt. Soc. Amer. B; 2003; vol. 20, pp. 284–91.CrossRefGoogle Scholar
Performance analysis of variable optical delay circuit using highly nonlinear fiber parametric wavelength converters,” Sakamoto, T., Okada, A., Moriwaki, O., Matsuoka, M., Kikuchi, K.J. Lightwave Technol.; 2004; vol. 22, pp. 874–81.CrossRefGoogle Scholar
“Optical delay line using four-wave mixing for repeated wavelength shifting,” Marhic, M. E. proposal to US Army Research Office, 1999.
Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Dahan, D., Eisenstein, G.Optics Express; 2005; vol. 13, pp. 6234–49.CrossRefGoogle Scholar
All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Sharping, J., Okawachi, Y.Howe, J., Xu, C., Willner, A., Wang, Y., Gaeta, A.Optics Express; 2005; vol. 13, pp. 7872–7.CrossRefGoogle ScholarPubMed
“12.47 ns continuously-tunable two-pump parametric delay,” Ren, J., Alic, N., Myslivets, E., Saperstein, R. E., McKinstrie, C. J., Jopson, R. M., Gnauck, A. H., Andrekson, P. A., Radic, S. In Proc. ECOC'06, Cannes, September 2006; postdeadline paper Th.4.4.3, pp. 45–6.
All-optical storage of a picosecond-pulse packet using parametric amplification,” Bartolini, G. D., Serkland, D. K., Kumar, P., Kath, W. L.IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 1020–2.CrossRefGoogle Scholar
All-optical picosecond-pulse packet buffer based on four-wave mixing loading and intracavity soliton control,” Wang, L Agarwal, A., Su, Y., Kumar, P.IEEE J. Quantum Electron.; 2002; vol. 38, pp. 614–19.CrossRefGoogle Scholar
All-optical loadable and erasable storage buffer based on parametric nonlinearity in fiber,” Agarwal, A., Wang, L. J., Su, Y. K., Kumar, P.J. Lightwave Technol.; 2005; vol. 23, pp. 2229–38.CrossRefGoogle Scholar
Active optical pulse compression with a gain of 29.0 dB by using four-wave mixing in an optical fiber,” Yamamoto, T., Nakazawa, M.IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 1595–7.CrossRefGoogle Scholar
10-GHz return-to-zero pulse source tunable in wavelength with a single- or multiwavelength output based on four-wave mixing in a newly developed highly nonlinear fiber,” Clausen, A. T., Oxenlowe, L., Peucheret, C., Poulsen, H. N., Jeppesen, P., Knudsen, S. N., Gruner-Nielsen, L.IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 70–2.CrossRefGoogle Scholar
Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” Hansryd, J., Andrekson, P. A.Electron. Lett.; 2001; vol. 37, pp. 584–5.CrossRefGoogle Scholar
40-Gb/s transmission using RZ-pulse source based on fiber optical parametric amplification,” Torounidis, T., Sunnerud, H., Hedekvist, P. O., Andrekson, P. A.IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 1159–61.CrossRefGoogle Scholar
Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” Torounidis, T., Westlund, M., Sunnerud, H., Olsson, B. E., Andrekson, P. A.IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 312–14.CrossRefGoogle Scholar
Fibre optical parametric amplifier pulse source: theory and experiments,” Torounidis, T., Karlsson, M., Andrekson, P. A.J. Lightwave Technol.; 2005; vol. 23, pp. 4067–73.CrossRefGoogle Scholar
Regeneratively modelocked dual-wavelength soliton-pulse fibre-optical parametric oscillator in C- and L-bands,” Lasri, J., Devgan, P., Tang, R., Grigoryan, V., Kath, W. L., Kumar, P.Electron. Lett.; 2004; vol. 40, pp. 622–3.CrossRefGoogle Scholar
Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Wang, L. Y., Agarwal, A., Kumar, P.Optics Comm.; 2000; vol. 184, pp. 151–6.Google Scholar
Clock multiplication in a singly resonant fiber parametric oscillator,” Franco, P., Fontana, F., Cristiani, I., Zenobi, M., Midrio, M., Romagnoli, M.Opt. Lett.; 1996; vol. 21, pp. 788–90.CrossRefGoogle Scholar
Fiber four-wave mixing demultiplexing with inherent parametric amplification,” Hedekvist, P. O., Karlsson, M., Andrekson, P. A.J. Lightwave Technol.; 1997; vol. 15, pp. 2051–8.CrossRefGoogle Scholar
O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,” Hansryd, J., Andrekson, P. A.IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 732–4.CrossRefGoogle Scholar
“Simultaneous 3R regeneration and wavelength conversion using a fiber-parametric limiting amplifier,” Su, Y. Wang, L. Agrawal, A. Kumar, P. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001; paper MG4.
All-optical 2R regeneration using data-pumped fibre parametric amplification,” Li, Y., Croussore, K., Kim, C., Li, G.Electron. Lett.; 2003; vol. 39, pp. 1263–4.CrossRefGoogle Scholar
“Tunable wavelength converter using cross-gain modulation in a fiber optical parametric amplifier,” Sakamoto, T., Wong, K. K. Y., Uesaka, K., Marhic, M. E., Kazovsky, L. G. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2002; paper TuS4.
Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” Matsumoto, M.IEEE Photon. Technol. Lett.; 2005; vol. 17, pp. 1055–7.CrossRefGoogle Scholar
300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” Li, J., Hansryd, J., Hedekvist, P. O., Andrekson, P. A., Knudsen, S. N.IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 987–9.Google Scholar
www.picosolve.com.
“Novel fiber Kerr-switch with parametric gain demonstration of optical demultiplexing and sampling up to 640 Gb/s,” Watanabe, S., Okabe, R., Hainberger, R., Schmidt-Langhorst, C., Schubert, C., Weber, H. G. In Proc. European Conf. on Optical Communication, 2004; paper Th4.1.6.
Optical level equalization based on gain saturation in fibre optical parametric amplifier,” Inoue, K.Electron. Lett.; 2000; vol. 36, pp. 1016–7.CrossRefGoogle Scholar
All-optical limiter using gain flattened fibre parametric amplifier,” Su, Y., Wang, L., Agarwal, A., Kumar, P.Electron. Lett.; 2000; vol. 36, pp. 1103–5.CrossRefGoogle Scholar
Experimental study on noise characteristics of a gain-saturated fiber optical parametric amplifier,” Inoue, K., Mukai, T.J. Lightwave Technol.; 2002; vol. 20, pp. 969–74.CrossRefGoogle Scholar
“Timing-jitter and amplitude-noise reduction by a chirped pulsed-pump fiber OPA”, Shimizu, K., Kalogerakis, G., Marhic, M. E., Kazovsky, L. G. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; paper TuH5, pp. 197–8.
All-optical signal reshaping via four-wave mixing in optical fibers,” Ciaramella, E., Trillo, S.IEEE Photon. Technol. Lett.; 2000; vol. 12, pp. 849–51.CrossRefGoogle Scholar
Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber,” Inoue, K.IEEE Photon. Technol. Lett.; 2001; vol. 13, pp. 338–40.CrossRefGoogle Scholar
All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” Radic, S., McKinstrie, C. J., Jopson, R. M., Centanni, J. C., Chraplyvy, A. R.IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 957–9.CrossRefGoogle Scholar
All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Croussore, K., Kim, C., Li, G.Opt. Lett.; 2004; vol. 29, pp. 2357–9.CrossRefGoogle ScholarPubMed
Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Croussore, K., Kim, I., Han, Y., Kim, C., Li, G.Optics Express; 2005; vol. 13, pp. 3945–50.CrossRefGoogle ScholarPubMed
All-optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Croussore, K., Kim, C., Li, G. in Proc. SPIE Defense and Security Symposium, 2005, vol. 5814, pp. 166–75.Google Scholar
Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Croussore, K., Kim, I., Kim, C., Han, Y., Li, G.Optics Express; 2006; vol. 14, pp. 2085–94.CrossRefGoogle ScholarPubMed
A novel dispersion monitoring technique based on four-wave mixing in optical fiber;” Li, S., Kuksenkov, D. V.IEEE Photon. Technol. Lett.; 2004; vol. 16, pp. 942–4.CrossRefGoogle Scholar
Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Ng, T. T., Blows, J. L., Mok, J. T., Hu, P., Bolger, J. A., Hambley, P., Eggleton, B. J.Optics Express; 2003; vol. 11, pp. 3122–7.CrossRefGoogle ScholarPubMed
Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” Ng, T. T., Blows, J. L., Mok, J. T., McKerracher, R. W., Eggleton, B. J.J. Lightwave Technol.; 2005; vol. 23, pp. 818–26.CrossRefGoogle Scholar
In-band OSNR monitoring using fibre optical parametric amplifier,” Ng, T. T., Blows, J. L., Mok, J. T., McKerracher, R. W., Eggleton, B. J.Electron. Lett.; 2005; vol. 41; pp. 352–3.CrossRefGoogle Scholar
Simultaneous in-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Ng, T. T., Blows, J. L., Rochette, M., Bolger, J. A., Littler, I., Eggleton, B. J.Optics Express; 2005; vol. 13; pp. 5542–52.CrossRefGoogle Scholar
Quantum information processing: cryptography, computation, and teleportation,” Spiller, T. P.Proc. IEEE; 1996; vol. 48, pp. 1719–46.CrossRefGoogle Scholar
Observation of twin-beam-type quantum correlation in optical fiber,” Sharping, J. E., Fiorentino, M., Kumar, P.Opt. Lett.; 2001; vol. 26, pp. 367–9.CrossRefGoogle ScholarPubMed
Quantum-correlated twin photons from microstructure fiber,” Sharping, J. E., Chen, J., Li, X., Kumar, P., Windeler, R. S.Optics Express; 2004; vol. 12, pp. 3086–94.CrossRefGoogle ScholarPubMed
All-fiber photon-pair source for quantum communications,” Fiorentino, M., Voss, P. L., Sharping, J. E., Kumar, P.IEEE Photon. Technol. Lett.; 2002; vol. 14, pp. 983–5.CrossRefGoogle Scholar
Squeezing in fibers with optical pulses,” Bergman, K., Haus, H. A.Opt. Lett.; 1991; vol. 16, pp. 663–5.CrossRefGoogle ScholarPubMed
Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier,” Levandovsky, D., Vasilyev, M., Kumar, P.Opt. Lett.; 1999; vol. 24, pp. 984–6.CrossRefGoogle ScholarPubMed
Tunable fiber parametric wavelength converter with 900 mW of CW output power at 1665 nm,” Marhic, M. E., Williams, G. M., Goldberg, L., Delavaux, J. M. P. In Conf. Photonics West, San, Jose C A, January 2006; Proc. SPIE, vol. 6103, pp. 165–76.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×