Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T14:07:46.169Z Has data issue: false hasContentIssue false

15 - Prospects for future developments

Published online by Cambridge University Press:  23 March 2010

Michel E. Marhic
Affiliation:
University of Wales, Swansea
Get access

Summary

Introduction

In the preceding chapters we have reviewed the state of the art in fiber OPAs, in terms of the current theoretical understanding and of their experimental performance and progress toward applications. Along the way we have identified a number of obstacles that stand in the way of further progress. In this chapter we review some areas of technology where advances would be desirable for the development of fiber OPAs or related devices. We also look at areas that have not been investigated much to date and may yet present interesting research and development opportunities.

Fibers

Conventional fiber structures, consisting of a cylindrical core surrounded by a cladding made from a lower-index material, offer limited opportunities for optimizing the fiber properties of fiber OPAs. In contrast, as mentioned in Section 2.1, holey fibers (HFs) have the potential for providing new generations of fibers suitable for fiber OPAs. In principle all HF properties, including loss, nonlinear index, mode effective area, and dispersion, can be optimized. To improve OPA performance significantly beyond the level reached with currently available fibers, all properties will eventually need to be simultaneously optimized in the same HF. This will pose an interesting challenge for the designers and manufacturers of HFs.

High-γ fibers

A large value of the fiber nonlinearity coefficient γ (see Eq. (2.24)) is beneficial in a number of ways. It makes it easier to obtain a large gain bandwidth at moderate pump power. It also reduces the product P0L required to achieve a given gain.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

“Design of highly-nonlinear tellurite fibers with zero dispersion near 1550 nm,” Hu, E. S., Hsueh, Y. L., Marhic, M. E., Kazovsky, L. G. In Proc. European Conf. on Optical Communication, Copenhagen, September 2002; vol. 2, paper 3.2.3.
Ultra-wideband tellurite-based Raman fiber amplifier,” Mori, A., Masuda, H., Shikano, K., Oikawa, K., Kato, K., Shimizu, M.Electron. Lett.; 2001; vol. 37, pp. 1442–3.CrossRefGoogle Scholar
“1.5 μm band zero-dispersion shifted tellurite photonic crystal fiber with a nonlinear coefficient γ of 675 W−1km−1,” Mori, A., Shikano, K., Enbutsu, K., Oikawa, K., Naganuma, K., Kato, M., Aozasa, S. In Proc. 30th European Conf. on Optical Communication, Stockholm, September 2004; paper Th3.3.6.
Extruded single-mode, high-nonlinearity, tellurite glass holey fiber,” Feng, X., Monro, T. M., Finazzi, V., Moore, R. C., Frampton, K., Petropoulos, P., Richardson, D. J.Electron. Lett.; 2005; vol. 41, pp. 835–6.CrossRefGoogle Scholar
“The fabrication and modelling of non-silica microstructured optical fibers,” Hewak, D. W., West, Y. D., Broderick, N. G. R., Monro, T. M., Richardson, D. J. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001; vol. 2, pp. TuC4-1–3.
Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Petropoulos, P., Ebendorff-Heidepriem, H., Finazzi, V., Moore, R. C., Frampton, K., Richardson, D. J., Monro, T. M.Optics Express; 2003; vol. 11; pp. 3568–73.CrossRefGoogle ScholarPubMed
“Efficient four-wave-mixing at 1.55 μm in a short-length dispersion shifted lead silicate holey fiber,” Asimakis, S., Petropoulos, P., Poletti, F., Leong, J. Y. Y., Ebendorff-Heidepriem, H., Moore, R. C., Frampton, K. E., Feng, X., Loh, W. H., Monro, T. M., Richardson, D. J. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Th1.3.3, pp. 17–8.
“Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance,” Hirano, M., Nakanishi, T., Okuno, T., Onishi, M. In Proc. 31st European Conf. on Optical Communication, September 2005, Glasgow.
“Dispersion-flattened photonic crystal fibers at 1550 nm,” Reeves, W., Knight, J., Russel, P. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; vol. 2, paper FI3, pp. 696–7.
“Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” Hansen, K. P., Folkenberg, J. R., Peucheret, C., Bjarklev, A. In Proc. Optical Fiber Communication Conf., Atlanta GA, March 2003; postdeadline paper, vol. 3, pp. PD2-1–3.
Optical parametric amplification in all-silica triangular-core photonic crystal fibers,” Poli, F., Adami, F., Foroni, M., Rosa, L., Cucinotta, A., Selleri, S.Applied Phys. B (Lasers and Optics); 2005; vol. B81, pp. 251–5.CrossRefGoogle Scholar
“375 THz parametric translation of modulated signal from 1550 nm to visible band,” Jiang R., Saperstein, R., Alic, N., Nezhad, N., McKinstrie, C., Ford, J., Fainman, Y., Radic, S. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2006; postdeadline paper, pp. PD16-1–3.
“Interband wavelength conversion of 320 Gb/s (32 × 10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” Watanabe, S., Takeda, S., Chikama, T. In Proc. 24th European Conf. on Optical Communication, Madrid, September 1998; vol. 3, pp. 83–7.
M. Onishi, private communication.
Temperature control of the gain spectrum of fiber optical parametric amplifiers,” Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G.Optics Express; 2005; vol. 13, pp. 4666–73.CrossRefGoogle ScholarPubMed
“Experiment of zero dispersion tuning by stretching down-sized HNLF,” Takahashi, M., Tadakuma, M., Hiroishi, J., Sugizaki, R., Yagi, T. In Proc. European Conf. on Optical Communication, Cannes, September 2006; vol. 4, paper Th1.5.1, pp. 41–2.
Supercontinuum generation in ultraviolet-irradiated fibers,” Nicholson, J. W., Westbrook, P. S., Feder, K. S., Yablon, A. D.Opt. Lett.; 2004; vol. 29, pp. 2363–5.CrossRefGoogle ScholarPubMed
Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” Mussot, A., Lantz, E., Durécu-Legrand, A., Simonneau, C., Bayart, D., Sylvestre, T., Maillotte, H.IEEE Photon. Technol. Lett.; 2006; vol. 18, pp. 22–4.CrossRefGoogle Scholar
“OTDR technique for characterization of fiber optic parametric amplifiers,” Olsson, B.-E., Torounidis, T., Karlsson, M., Sunnerud, H., Andrekson, P. In Proc. Optical Communication Conf. and the National Fiber Optic Engineers Conf., Anaheim CA, March 2006; paper OWT3.
“Brillouin optical time domain analysis of fiber optic parametric amplifiers,” Vedadi, A., Lantz, E., Maillotte, H., Sylvestre, T. In Proc. European Conf. on Optical Communication, Cannes, September 2006; paper Th1.3.7.
2.2-W continuous-wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm,” Brien, S., Lang, R., Parke, R., Major, J., Welch, D. F., Mehuys, D.IEEE Photon. Technol. Lett.; 1997; vol. 9, pp. 440–2.CrossRefGoogle Scholar
http://www.m2k-laser.de.
http://www.sacher.de.
http://www.npphotonics.com.
“High power ASE-free tunable laser using a Sagnac ring interferometer within the external cavity,” Fulop, L., Souhaite, G., Moulinet, X., Graindorge, P., Lefevre, H. C. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2001; vol. 2, pp. TuJ6-1–3.
Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” Wong, K. K. Y., Marhic, M. E., Kazovsky, L. G.IEEE Photon. Technol. Lett.; 2003; vol. 15, pp. 33–5.CrossRefGoogle Scholar
“Nearly 100 nm bandwidth of flat gain with a double-pumped fiber optic parametric amplifier,” Marconi, J. D., Chavez Boggio, J. M., Fragnito, H. L. Submitted to OFC 2007, Anaheim CA, March 2007, paper OWB1.
Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Laude, V., Khelif, A., Benchabane, S., Wilm, M., Sylvestre, T., Kibler, B., Mussot, A., Dudley, J. M., Maillotte, H.Phys. Rev. B; 2005; vol. 71, pp. 045107-1–6.CrossRefGoogle Scholar
“Nonlinear optical fibers with increased SBS thresholds,” Bickham, S., Kobyakov, A., Li, S. In Proc. Optical Fiber Communication Conf., Anaheim CA, March 2006, paper OTuA3.
Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” Yoshizawa, N., Imai, T.J. Lightwave Technol.; 1993; vol. 11, pp. 1518–22.CrossRefGoogle Scholar
“Narrow linewidth wavelength converter with 70 nm signal tuning band by using a strained HNLF,” Marconi, J. D., Chavez Boggio, J. M., Fragnito, H. L. In Proc. Conf. on Optical Amplifiers and Their Applications, Whistler, Canada, July 2006.
Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers,” Lee, J. H., Tanemura, T., Kikuchi, K., Nagashima, T., Hasegawa, T., Ohara, S., Sugimoto, N.Opt. Lett.; 2005; vol. 30, pp. 1698–700.CrossRefGoogle ScholarPubMed
“Design of highly nonlinear bismuth-oxide holey fibers with zero dispersion and enhanced Brillouin suppression,” Poletti, F., Petropoulos, P., Broderick, N. G., Richardson, D. J. In Proc. European Conf. on Optical Communication, Cannes, September 2006; paper Tu4.3.2.
“Dispersion shifted Bi2O3-based photonic crystal fiber,” Nagashima, T., Hasegawa, T., Ohara, S., Sugimoto, N. In Proc. European Conf. on Optical Communication, Cannes, September 2006; paper We1.3.2.
“Al2O3–SiO2 core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB,” Nakanishi, T., Tanaka, M., Hasegawa, T., Hirano, M., Okuno, T., Onoshi, M. In Proc. European Conf. on Optical Communication, Cannes, September 2006; postdeadline paper Th4.2.2.
Observation of stimulated Raman amplification in silicon waveguides,” Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y., Jalali, B.Optics Express; 2003; vol. 11, pp. 1731–9.CrossRefGoogle ScholarPubMed
Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Jones, R., Liu, A., Rong, H., Paniccia, M., Cohen, O., Hak, D.Optics Express; 2005; vol. 13, pp. 1716–23.CrossRefGoogle Scholar
Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Turner, A. C., Manolatou, C., Schmidt, B. S., Lipson, M., Foster, M. A., Sharping, J. E., Gaeta, A. L.Optics Express; 2006; vol. 14, pp. 4357–62.CrossRefGoogle ScholarPubMed
Dispersion tailoring and soliton propagation in silicon waveguides,” Yin, L., Lin, Q., Agrawal, G. P.Opt. Lett.; 2006; vol. 31, pp. 1295–7.CrossRefGoogle ScholarPubMed
Broad-band optical parametric gain on a silicon photonic chip,” Foster, M. A., Turner, A. C., Sharping, J. E., Schmidt, B. S., Lipson, M., Gaeta, A. L.Nature; 2006; vol. 441, pp. 960–3.CrossRefGoogle ScholarPubMed
Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C., Yokohama, I.Phys. Rev. Lett.; 2001; vol. 87, pp. 253 902/1–4.CrossRefGoogle ScholarPubMed
Real-space observation of ultraslow light in photonic crystal waveguides,” Gersen, H., Karle, T. J., Engelen, R. J. P., Bogaerts, W., Korterik, J. P., Hulst, N. F., Krauss, T. F., Kuipers, L.Phys. Rev. Lett.; 2005; vol. 94, pp. 073 903/1–4.CrossRefGoogle ScholarPubMed
Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” McMillan, J. F., Yang, X., Panoiu, N. C., Osgood, R. M., Wong, C. W.Opt. Lett.; 2006; vol. 31, pp. 1235–7.CrossRefGoogle ScholarPubMed
Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G.IEEE J. Select. Topics in Quantum Electron.; 2004; vol. 10, pp. 1133–41.CrossRefGoogle Scholar
Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Coen, S., Haelterman, M.Opt. Lett.; 2001; vol. 26, pp. 39–41.CrossRefGoogle Scholar
Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Kippenberg, T. J., Spillane, S. M., Vahala, K. J.Phys. Rev. Lett.; 2004; vol. 93, pp. 083904/1–4.CrossRefGoogle Scholar
Transmission of optical communication signals by distributed parametric amplification,” Kalogerakis, G., Marhic, M. E., Wong, K. K. Y., Kazovsky, L. G.J. Lightwave Technol.; 2005; vol. 23, pp. 2945–53.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Prospects for future developments
  • Michel E. Marhic, University of Wales, Swansea
  • Book: Fiber Optical Parametric Amplifiers, Oscillators and Related Devices
  • Online publication: 23 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511600265.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Prospects for future developments
  • Michel E. Marhic, University of Wales, Swansea
  • Book: Fiber Optical Parametric Amplifiers, Oscillators and Related Devices
  • Online publication: 23 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511600265.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Prospects for future developments
  • Michel E. Marhic, University of Wales, Swansea
  • Book: Fiber Optical Parametric Amplifiers, Oscillators and Related Devices
  • Online publication: 23 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511600265.015
Available formats
×