Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-11T06:30:39.409Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 January 2010

Bjørn Stabell
Affiliation:
Universitetet i Oslo
Ulf Stabell
Affiliation:
Universitetet i Oslo
Get access
Type
Chapter
Information
Duplicity Theory of Vision
From Newton to the Present
, pp. 207 - 220
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, I. (1968). Further analysis of the responses of LGN cells. Journal of the Optical Society of America, 58, 574–579.CrossRefGoogle ScholarPubMed
Aguilar, M. & Stiles, W. S. (1954). Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta, 1, 59–65.CrossRefGoogle Scholar
Ahn, S. J. & MacLeod, I. A. (1993). Link-specific adaptation in the luminance and chromatic channels. Vision Research, 33, 2271–2286.CrossRefGoogle ScholarPubMed
Aubert, H. (1865). Physiologie der Netzhaut. Morgenstern: Breslau.Google Scholar
Baehr, W., Karan, S., Maeda, T.et al. (2007). The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. Journal of Biological Chemistry, 282, 8837–8847.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1957). Increment thresholds at low intensities considered as signal/noise discriminations. Journal of Physiology, 136, 469–488.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1964). Dark-adaptation: a new hypothesis. Vision Research, 4, 47–58.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1972). Dark and light adaptation: psychophysics. In Handbook of Sensory Physiology, vol. VII/4 Visual Psychophysics. Jameson, D. & Hurvich, L. M., eds. Berlin: Springer, pp. 1–28.Google Scholar
Barlow, H. B. & Andrews, D. P. (1973). The site at which rhodopsin bleaching raises scotopic threshold. Vision Research, 13, 903–908.CrossRefGoogle ScholarPubMed
Barlow, H. B., Fitzhugh, R. & Kuffler, S. W. (1957). Change of organization in the receptive fields of the cat's retina during dark adaptation. Journal of Physiology, 137, 338–354.CrossRefGoogle ScholarPubMed
Barlow, H. B. & Sparrock, J. M. (1964). The role of afterimages in dark adaptation. Science, 144, 1309–1314.CrossRefGoogle ScholarPubMed
Blakemore, C. B. & Rushton, W. A. H. (1965). Dark adaptation and increment threshold in a rod monochromat. Journal of Physiology, London, 181, 612–628.CrossRefGoogle Scholar
Blanchard, J. (1918). The brightness sensibility of the retina. Physical Review, 11, 81–99.CrossRefGoogle Scholar
Blick, D. W. & MacLeod, D. I. A. (1978). Rod threshold: influence of neighboring cones. Vision Research, 18, 1611–1616.CrossRefGoogle ScholarPubMed
Boll, F. (1877). Zur Anatomie und Physiologie der Retina. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Akademie der Wissenschaften, Berlin: Der KGL, pp. 783–788.
Boll, F. (1878). Zur Physiologie des Sehens und der Farbenempfindung. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Akademie der Wissenschaften, Berlin: Der KGL, pp. 2–7.
Boring, E. G. (1957). A History of Experimental Psychology. New York: Appleton-Century-Crofts.Google Scholar
Brown, P. K. & Wald, G. (1964). Visual pigments in single rods and cones of the human retina. Science, 144, 45–52.CrossRefGoogle ScholarPubMed
Buck, S. L. (1985). Cone-rod interaction over time and space. Vision Research, 25, 907–916.CrossRefGoogle ScholarPubMed
Buck, S. L. (1997). Influence of rod signals on hue perception: evidence from successive contrast. Vision Research, 37, 1295–1301.CrossRefGoogle Scholar
Buck, S. L. (2001). What is the hue of rod vision?Color Research and Application, 26 (suppl.), S57–S59.3.0.CO;2-J>CrossRefGoogle Scholar
Buck, S. L. (2004). Rod-cone interactions in human vision. In The Visual Neurosciences. Chalupa, L. M. & Werner, J. S., eds. Cambridge, MA: The MIT Press, pp. 863–878.Google Scholar
Buck, S. L., Knight, R. & Bechtold, J. (2000). Opponent-color models and the influence of rod signals on the loci of unique hues. Vision Research, 40, 3333–3344.CrossRefGoogle ScholarPubMed
Buck, S. L., Knight, R., Fowler, G. & Hunt, B. (1998). Rod influence on hue-scaling functions. Vision Research, 38, 3259–3263.CrossRefGoogle ScholarPubMed
Buck, S. L., Peeples, D. R. & Makous, W. (1979). Spatial patterns of rod-cone interaction. Vision Research, 19, 775–782.CrossRefGoogle ScholarPubMed
Buck, S. L. & Makous, W. (1981). Rod-cone interaction on large and small backgrounds. Vision Research, 21, 1181–1187.CrossRefGoogle ScholarPubMed
Buck, S. L., Stefurak, D. L., Moss, C. & Regal, D. (1984). The time-course of rod-cone interaction. Vision Research, 24, 543–548.CrossRefGoogle ScholarPubMed
Burns, M. E. & Lamb, T. (2004). Visual transduction by rod and cone photoreceptors. In The Visual Neurosciences. Chalupa, L. M. & Werner, J. S., eds. Cambridge, MA: The MIT Press, pp. 215–233.Google Scholar
Cajal, S. R. y (1894). Die Retina der Wirbelthiere. Untersuchungen mit der Golgi-Cajal`schen Chromsilbermethode und der Ehrlich`schen Methylenblaufärbung. Wiesbaden: Von J. F. Bergmann.
Cajal, S. R. y (1937). Recollections of My Life. In Memories of the American Philosophical Society, Vol. VIII, Part II, 1937. Translated by Horne Craigie, E. with the assistance of Cano, Juan. Philadelphia: The American Philosophical Society.Google Scholar
Cameron, A. M., Mahroo, O. A. R. & Lamb, T. D. (2006). Dark adaptation of human rod bipolar cells measured from the b-wave of the scotopic electroretinogram. Journal of Physiology, 575, 507–526.CrossRefGoogle ScholarPubMed
Campbell, F. W. & Rushton, W. A. H. (1955). Measurement of the scotopic pigment in the living human eye. Journal of Physiology, 130, 131–147.CrossRefGoogle ScholarPubMed
Chalmers, A. F. (1986). What is This Thing Called Science?Philadelphia: Open University Press.Google Scholar
Cohen, B. (1978). Isaac Newton's Papers and Letters on Natural Philosophy. Cambridge, MA: Harvard University Press.Google Scholar
Cone, R. A. (1963/1964). The rat electroretinogram I: contrasting effects of adaptation on the amplitude and latency of the b-wave. Journal of General Physiology, 47, 1089–1105.CrossRefGoogle Scholar
Craik, K. J. W. & Vernon, M. D. (1941). The nature of dark adaptation. British Journal of Psychology, 32, 62–81.Google Scholar
Crawford, B. H. (1940). The effect of field size and pattern on the change of visual sensitivity with time. Proceedings of the Royal Society of London, B, 129, 94–106.CrossRefGoogle Scholar
Crawford, C. B. (1947). Visual adaptation in relation to brief conditioning stimuli. Proceedings of the Royal Society of London, B, 134, 283–302.CrossRefGoogle ScholarPubMed
Crozier, W. J. & Wolf, E. (1938/1939). The flicker response contour for the gecko (rod retina). Journal of General Physiology, 22, 555–566.CrossRefGoogle Scholar
Daw, N. W., Jensen, R. J. & Brunken, W. J. (1990). Rod pathways in mammalian retinae. Trends in Neurosciences, 13, 110–115.CrossRefGoogle ScholarPubMed
Dean, D. M., Nguitragool, W., Miri, A., McCabe, S. L. & Zimmerman, A. L. (2002). All-trans-retinal shuts down rod cyclic nucleotide gated ion channels: a novel role for photoreceptor retinoids in response to bright light?Proceedings of the National Academy of Sciences of the United States of America, 99 (12), 8372–8377.CrossRefGoogle ScholarPubMed
Valois, R. L. (1965). Analysis and coding of color vision in the primate visual system. Cold Spring Harbor Symposia on Quantitative Biology, 30, 567–579.CrossRefGoogle ScholarPubMed
Valois, R. L., Abramov, I. & Jacobs, G. H. (1966). Analysis of response patterns of LGN cells. Journal of the Optical Society of America, 56, 966–977.CrossRefGoogle ScholarPubMed
Vries, H. (1943). The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye. Physica, 10, 553–564.CrossRefGoogle Scholar
Donner, K. O. & Reuter, T. (1968). Visual adaptation of the rhodopsin rods in the frog's retina. Journal of Physiology, 199, 59–87.CrossRefGoogle Scholar
Dowling, J. E. (1960). Chemistry of visual adaptation in the rat. Nature, 188, 114–118.CrossRefGoogle ScholarPubMed
Dowling, J. E. (1967). The site of visual adaptation. Science, 155, 273–279.CrossRefGoogle ScholarPubMed
Dowling, J. E. & Ripps, H. (1970). Visual adaptation in the retina of the skate. Journal of General Physiology, 56, 491–520.CrossRefGoogle ScholarPubMed
Dreher, E. (1912). Methodische Untersuchung der Farbentonänderungen homogener Lichter bei zunehmend indirektem Sehen und veränderter Intensität. Zeitschrift für Sinnesphysiologie, 46, 1–82.Google Scholar
Du Croz, J. J. & Rushton, W. A. H. (1966). The separation of cone mechanisms in dark adaptation. Journal of Physiology, 183, 481–496.CrossRefGoogle ScholarPubMed
Dunn, F. A. & Rieke, F. (2006). The impact of photoreceptor noise on retinal gain controls. Current Opinion in Neurobiology, 16, 363–370.CrossRefGoogle ScholarPubMed
Ebbinghaus, H. (1893). Theorie des Farbensehens. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 5, 145–238.Google Scholar
Fain, G. L., Lamb, T. D., Matthews, H. R. & Murphy, R. L. W. (1989). Cytoplasmic calcium as the messenger for light adaptation in salamander rods. Journal of Physiology, 416, 215–243.CrossRefGoogle ScholarPubMed
Fain, G. L. & Matthews, H. R. (1990). Calcium and the mechanism of light adaptation in vertebrate photoreceptors. Trends in Neuroscience, 13, 378–384.CrossRefGoogle ScholarPubMed
Fesenko, E. E., Kolosnikov, S. S. & Lyubarsky, A. L. (1985). Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature, 313, 310–313.CrossRefGoogle ScholarPubMed
Flamant, F. & Stiles, W. S. (1948). The directional and spectral sensitivities of the retinal rods to adapting fields of different wave-lengths. Journal of Physiology, 107, 187–202.CrossRefGoogle ScholarPubMed
Frumkes, T. E., Sekuler, M. D., Barris, M. C., Reiss, E. H. & Chalupa, L. M. (1973). Rod-cone interaction in human scotopic vision – I. temporal analysis. Vision Research, 13, 1269–1282.CrossRefGoogle ScholarPubMed
Frumkes, T. E., Sekuler, M. D. & Reiss, E. H. (1972). Rod-cone interaction in human scotopic vision. Science, 175, 913–914.CrossRefGoogle ScholarPubMed
Frumkes, T. E. & Temme, L. A. (1977). Rod-cone interaction in human scotopic vision: II. Cones influence rod increment thresholds. Vision Research, 17, 673–679.CrossRefGoogle ScholarPubMed
Goethe, J. W. (1810). Johann Wolfgang Goethe Sämtliche Werke. Briefe, Tagebücher und Gespräche, Band 23/1, In Johann Wolfgang Goethe zur Farbenlehre. Manfred Wenzel, ed. (1991). Frankfurt am Main: Deutscher Klassiker Verlag.
Gouras, P. & Link, K. (1966). Rod and cone interaction in dark adapted monkey ganglion cells. Journal of Physiology, 184, 499–510.CrossRefGoogle ScholarPubMed
Graham, C. H. & Hartline, H. K. (1935). The response of single visual sense cells to lights of different wave-lengths. Journal of General Physiology, 18, 917–931.CrossRefGoogle ScholarPubMed
Granit, R. (1938). Processes of adaptation in the vertebrate retina in the light of recent photochemical and electrophysiological research. Documenta Ophthalmologica, 1, 7–77.CrossRefGoogle Scholar
Granit, R. (1947). Sensory Mechanisms of the Retina. London: Oxford University Press.Google Scholar
Granit, R. (1955). Receptors and Sensory Perception. New Haven: Yale University Press.Google Scholar
Granit, R. (1963). Sensory Mechanisms of the Retina, with an Appendix on Electro-retinography. London: Hafner Publishing Company.Google Scholar
Granit, R., Holmberg, T. & Zewi, M. (1938). On the mode of action of visual purple on the rod cell. Journal of Physiology, 94, 430–440.CrossRefGoogle ScholarPubMed
Granit, R., Munsterhjelm, A. & Zewi, M. (1939). The relation between concentration of visual purple and retinal sensitivity to light during dark-adaptation. Journal of Physiology, 96, 31–44.CrossRefGoogle ScholarPubMed
Grassmann, H. (1853). Zur Theorie der Farbenmischung. Annalen der Physik und Chemie. Poggendorff, J. C., ed. Leipzig: von Johann Ambrosius Barth, pp. 69–84.Google Scholar
Greene, B. (2005). The Fabric of the Cosmos. London: Penguin Books.Google Scholar
Gribbin, J. (2003). Science: A History. London: Penguin Books.Google Scholar
Grünert, U. & Wässle, H. (1996). Glycine receptors in the rod pathway of the macaque monkey retina. Visual Neuroscience, 13, 101–115.CrossRefGoogle ScholarPubMed
Hanssen, H. S. (2000). Theofrast fra Eressos. Kristiansand, Norway: Nordic Academic Press.Google Scholar
Hartline, H. K. (1940). The nerve messages in the fibers of the visual pathway. Journal of the Optical Society of America, 30, 239–247.CrossRefGoogle Scholar
Hecht, S. (1919/1920a). The photochemical nature of the photosensory process. Journal of General Physiology, 2, 229–246.CrossRefGoogle Scholar
Hecht, S. (1919/1920b). Intensity and the process of photoreception. Journal of General Physiology, 2, 337–347.CrossRefGoogle Scholar
Hecht, S. (1919/1920c). The dark adaptation of the human eye. Journal of General Physiology, 2, 499–517.CrossRefGoogle Scholar
Hecht, S. (1921/1922). The nature of foveal dark adaptation. Journal of General Physiology, 4, 113–139.CrossRefGoogle ScholarPubMed
Hecht, S. (1937). Rods, cones, and the chemical basis of vision. Physiological Review, 17, 239–290.CrossRefGoogle Scholar
Hecht, S., Haig, C. & Chase, A. (1936/1937). The influence of light adaptation on subsequent dark adaptation of the eye. Journal of General Physiology, 20, 831–850.CrossRefGoogle Scholar
Hecht, S., Haig, C. & Wald, G. (1935/1936). The dark adaptation of retinal fields of different size and location. Journal of General Physiology, 19, 321–337.CrossRefGoogle ScholarPubMed
Hecht, S. & Schlaer, S. (1938). An adaptometer for measuring human dark adaptation. Journal of the Optical Society of America, 28, 269–275.CrossRefGoogle Scholar
Helmholtz, H. (1852). Ueber die Theorie der zusammengesetzten Farben. Annalen der Physik und Chemie, 87 Band, Herausgegeben zu Berlin von J. C. Poggendorff, Johann Ambrosius Barth, Leipzig, pp. 45–66.CrossRef
Helmholtz, H. (1855). Ueber die Zusammensetzung von Spektralfarben. Annalen der Physik und Chemie, 94 Band, Herausgegeben zu Berlin von J. C. Poggendorff, Johann Ambrosius Barth, Leipzig, pp. 1–28.
Helmholtz, H. (1867). Handbuch der Physiologischen Optik. Leipzig: Voss.Google Scholar
Helmholtz, H. (1896). Handbuch der Physiologischen Optik. Leipzig: Voss.Google Scholar
Helmholtz, H. (1911). In Helmholtz's Treatise on Physiological Optics. Translated from the third German edition, 1962, James, P. C. Southall, ed. New York: Dover Publications, Volumes I and II.
Hering, E. (1878). Zur Lehre vom Lichtsinne. Wien: Carl Gerold Sohn`s.Google Scholar
Hering, E. (1964). Outlines of a Theory of the Light Sense by Evald Hering. Translated by Hurvich, L. M. and Jameson, D.. Cambridge, MA: Harvard University Press.Google Scholar
Ingling, C. R., Lewis, A. L., Loose, D. R. & Myers, K. J. (1977). Cones change rod sensitivity. Vision Research, 17, 555–563.CrossRefGoogle ScholarPubMed
Kaupp, U. B., Hanke, W., Simmoteit, R. & Lühring, H. (1988). Electrical and biochemical properties of the cGMP-gated cation channel from rod photo- receptors. Cold Spring Harbor Symposia on Quantitative Biology, 53, 407–415.CrossRefGoogle Scholar
Kaupp, U. B., Niidome, T., Tanabe, T.et al. (1989). Primary structure and functional expression from complementary DNA of the rod photo-receptor cyclic GMP-gated channel. Nature, 342, 762–766.CrossRefGoogle Scholar
Kawamura, S. (1993). Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature, 362, 855–857.CrossRefGoogle ScholarPubMed
Knight, R. & Buck, S. L. (2001). Rod influence on hue perception: effect of background light level. Color Research and Application, 26 (suppl.), S60–S64.3.0.CO;2-G>CrossRefGoogle Scholar
Knight, R. & Buck, S. L. (2002). Time-dependent changes of rod influence on hue perception. Vision Research, 42, 1651–1662.CrossRefGoogle ScholarPubMed
Kohlrausch, A. (1931). Tagessehen, Dämmersehen, Adaptation. In Handbuch der Normalen und Pathologischen Physiologie. Bethe, A., Bergmann, G., Embden, G. & Ellinger, A., eds. Berlin: Springer, 12 (2), pp. 1499–1594.Google Scholar
König, A. (1894). Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Zweiter halbband, Juni bis December. Berlin: Der Königlichen Akademie der Wissenschaften, pp. 577–598.
König, A. & Dieterici, C. (1893). Die Grundempfindungen in normalen und anomalen Farbensystemen und ihre Intensitätsverteilung im Spektrum. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 4, 241–347.Google Scholar
Kries, J. (1894). Ueber den Einfluss der Adaptation auf Licht- und Farbenempfindung und über die Funktion der Stäbchen. Berichte der Naturforschenden Gesellschaft zu Freiburg I. B, 9, 61–70.Google Scholar
Kries, J. (1896). Über die Funktion der Netzhautstäbchen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 9, 81–123.Google Scholar
Kries, J. (1911). II. Theories of vision. In Helmholtz's Treatise on Physiological Optics. Translated from the third German edition, 1962. Southall, J. P. C., ed. Volumes I and II. New York: Dover Publications, pp. 426–454.Google Scholar
Kries, J. (1929). Zur Theorie des Tages- und Dämmerungssehens. In Handbuch der Normalen und Pathologischen Physiologie, Band 12. Bethe, A., Bergmann, G., Embden, G. & Ellinger, A., eds. Berlin: Springer, pp. 679–713.Google Scholar
Kries, J. & Nagel, W. (1896). Über den Einfluss von Lichtstärke und Adaptation auf das Sehen des Dichromaten (Grünblinden). Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 12, 1–38.Google Scholar
Kuhn, T. S. (1970). The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.Google Scholar
Kuhn, T. S. (1994). Reflections on my critics. In Criticism and the Growth of Knowledge. Lakatos, Imre & Musgrave, Alan, eds. Cambridge: Cambridge University Press, pp. 231–278.Google Scholar
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.CrossRefGoogle ScholarPubMed
Kühne, W. (1877a). Ueber den Sehpurpur. Untersuchungen aus dem Physiologischen Institute der Universität Heidelberg, Band I, Heft I. Heidelberg: Carl Winter, pp. 15–103.
Kühne, W. (1877b). Ueber die Verbreitung des Sehpurpurs im menschlichen Auge. Untersuchungen aus dem Physiologischen Institute der Universität Heidelberg, Band I, Heft II. Heidelberg: Carl Winter, pp. 105–113.
Kühne, W. (1877–1878). Ueber den Sehpurpur. Untersuchungen aus dem Physiologischen Institute der Universität Heidelberg, Band I & II. Heidelberg: Carl Winter.
Kühne, W. (1879). Chemische Vorgänge in der Netzhaut. Handbuch der Physiologie, Dritter Band. Leipzig: Vogel, pp. 235–342.
Lamb, T. D. (1981). The involvement of rod photoreceptors in dark adaptation. Vision Research, 21, 1773–1782.CrossRefGoogle ScholarPubMed
Lamb, T. D. (1990). Dark adaptation: a re-examination. In Night Vision, Basic, Clinical and Applied Aspects. Hess, R. F., Sharpe, L. T. & Nordby, K., eds. Cambridge: Cambridge University Press, pp. 177–222.Google Scholar
Latch, M. & Lennie, P. (1977). Rod-cone interaction in light adaptation. Journal of Physiology, 269, 517–534.CrossRefGoogle ScholarPubMed
Lennie, P. & Fairchild, M. D. (1994). Ganglion cell pathways for rod vision. Vision Research, 34, 477–482.CrossRefGoogle ScholarPubMed
Lie, I. (1963). Dark adaptation and the photochromatic interval. Documenta Ophthalmologica, 17, 411–510.CrossRefGoogle ScholarPubMed
Lipetz, L. E. (1961). A mechanism of light adaptation. Science, 133, 639–640.CrossRefGoogle ScholarPubMed
Loeser, L. (1904). Über den Einfluss der Dunkeladaptation auf die spezifische Farbenschwelle. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 36, 1–18.Google Scholar
Lythgoe, R. J. (1940). The mechanism of dark adaptation: a critical resumé. British Journal of Ophthalmology, 24, 21–43.CrossRefGoogle ScholarPubMed
Mach, E. (1865). Über die Wirkung der räumlichen Vertheilung des Lichtreizes auf die Netzhaut. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, 52, Abteilung 2, 303–322.Google Scholar
Makous, W. & Booth, R. (1974). Cones block signals from rods. Vision Research, 14, 2285–2294.CrossRefGoogle ScholarPubMed
Marks, W. B., Dobelle, W. H. & MacNichol, E. F. (1964). Visual pigments of single primate cones. Science, 143, 1181–1182.CrossRefGoogle ScholarPubMed
Matthews, H. R., Murphy, R. L. W., Fain, G. L. & Lamb, T. D. (1988). Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature, 334, 67–69.CrossRefGoogle ScholarPubMed
Maxwell, J. C. (1855). Experiments on colour, as perceived by the eye, with remarks on colour-blindness. From the Transactions of the Royal Society of Edinburgh, Vol. 21; reprinted in The Scientific Papers of James Clerk Maxwell, 1890. Niven, W. D., ed. Cambridge: Cambridge University Press, Vol. I, pp. 126–154.Google Scholar
Maxwell, J. C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum. Philosophical Transactions of the Royal Society of London, 150, 57–84.CrossRefGoogle Scholar
Maxwell, J. C. (1872). On colour vision. From the Proceedings of the Royal Institution of Great Britain, Vol. 6, 1872; reprinted in The Scientific Papers of James Clerk Maxwell, 1890. Niven, W. D., ed. Cambridge: Cambridge University Press, Vol. II, pp. 267–279.Google Scholar
McCabe, S. L., Pelosi, D. M., Tetreault, M.et al. (2004). All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels. Journal of General Physiology, 123, 521–531.CrossRefGoogle ScholarPubMed
McCann, J. J. & Benton, J. L. (1969). Interaction of the long-wave cones and the rods to produce colour sensations. Journal of the Optical Society of America, 59, 103–107.CrossRefGoogle Scholar
McKee, S. P., McCann, J. J. & Benton, J. L. (1977). Color vision from rod and long-wave cone interactions: conditions in which rods contribute to multicoloured images. Vision Research, 17, 175–185.CrossRefGoogle Scholar
Mitarai, G., Svaetichin, G., Vallecalle, E.et al. (1961). Glia-neuron interaction and adaptation mechanisms of the retina. In Neurophysiologie und Psychophysik des visuellen Systems. Jung, R. and Kornhuber, H., eds. Berlin: Springer, pp. 463–481.Google Scholar
Mollon, J. D. & Polden, P. G. (1979). Post-receptoral adaptation. Vision Research, 19, 435–440.CrossRefGoogle ScholarPubMed
Monod, J. (1970). Le Hasard et la Nécessité. Paris: Du Seuil.Google Scholar
Monod, J., Wyman, J. & Changeux, J-P. (1965). On the nature of allosteric transitions: a plausible model. Journal of Molecular Biology, 12, 88–118.CrossRefGoogle ScholarPubMed
Müller, G. E. (1896). Zur Psychophysik der Gesichtsempfindungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, Zehnter Band, 321–413.
Müller, G. E. (1897). Zur Psychophysik der Gesichtsempfindungen. Die besondere Funktionsweise der Stäbchen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, Vierzhnter Band, 161–193.
Müller, G. E. (1923). Zur Theorie des Stäbchenapparates und der Zapfenblindheit. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. II. Abteilung. Zeitschrift für Sinnesphysiologie, 54 Band, 9–48 and 102–145.Google Scholar
Müller, G. E. (1930). Über die Farbenempfindungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. Ergänzungsband, 17, 1–434.Google Scholar
Müller, J. (1840). Handbuch der Physiologie des Menschen, Zweiter Band. Coblenz: Verlag von J. Hölscher.Google Scholar
Nagel, W. (1911). Adaptation, twilight vision, and the duplicity theory. In Handbuch der Physiologischen Optik von H. von Helmholtz (Dritte Auflage). Gullstrand, A., Kries, J. & Nagel, W., eds. Band, Zweiter, Hamburg and Leipzig: Leopold Voss, pp. 313–394.Google Scholar
Naka, K. I. & Rushton, W. H. A. (1968). S-potential and dark adaptation in fish. Journal of Physiology, London, 194, 259–269.CrossRefGoogle Scholar
Nerger, J. L., Volbrecht, V. J. & Ayde, C. J. (1995). Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity. Journal of the Optical Society of America A, 12, 1225–1232.CrossRefGoogle ScholarPubMed
Nerger, J. L., Volbrecht, V. J., Ayde, C. J. & Imhoff, S. M. (1998). Effect of the S-cone mosaic and rods on red/green equilibria. Journal of the Optical Society of America A, 15, 2816–2826.CrossRefGoogle ScholarPubMed
Newton, I. (1671/1672). In Philosophical Transactions of the Royal Society of London, Vol. 6, 3075–3087.
Newton, I. (1675). In Isaac Newton's Papers and Letters on Natural Philosophy. (Cohen, B., ed., second edition, 1978, Cambridge, MA: Harvard University Press, pp. 177–235.)Google Scholar
Newton, I. (1730). Opticks or a Treatise of the Reflections, Refractions, Inflections and Colours of Light (based on the fourth edition, London, 1730), Cohen, Bernard, ed., 1979. New York: Dover Publications.Google Scholar
Nicol, G. D. & Bownds, M. D. (1989). Calcium regulates some, but not all aspects of light adaptation in rod photoreceptors. Journal of General Physiology, 94, 233–259.CrossRefGoogle Scholar
Nordby, K., Stabell, B. & Stabell, U. (1984). Dark-adaptation of the human rod system. Vision Research, 24, 841–849.CrossRefGoogle ScholarPubMed
Parinaud, H. (1881). L'hemeralopie et les fonctions du pourpre visuel. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 93, 286–287.Google Scholar
Parinaud, H. (1884a). Sur la sensibilité visuelle. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 99, 241–242.Google Scholar
Parinaud, H. (1884b). De l'intensité lumineuse des couleurs spectrales; influence de l'adaptation rétinienne. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 99, 937–939.Google Scholar
Parinaud, H. (1885). Sur l'existence de deux espèces de sensibilité à la lumière. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 101, 821–823.Google Scholar
Pepe, I. M., Panfoli, I. & Hamm, H. E. (1989). Visual transduction in vertebrate photoreceptors. Cell Biophysics, 14, 129–137.CrossRefGoogle ScholarPubMed
Pepperberg, D. R. (1984). Rhodopsin and visual adaptation: photoreceptor thresholds in the isolated skate retina. Vision Research, 24, 357–366.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1989). Mechanisms of cooperativity and allosteric regulation in proteins. Quarterly Reviews of Biophysics, 22 (2), 139–237.CrossRefGoogle ScholarPubMed
Polden, P. G. & Mollon, J. D. (1980). Reversed effect of adapting stimuli on visual sensitivity. Proceedings of the Royal Society of London, B, 210, 235–272.CrossRefGoogle ScholarPubMed
Polyak, S. L. (1941/1948). The Retina. Chicago: University of Chicago Press.Google Scholar
Popper, K. R. (1969). Conjectures and Refutations. London: Routledge & Kegan Paul.Google Scholar
Popper, K. R. (1975). The Logic of Scientific Discovery. London: Hutchinson.Google Scholar
Popper, K. R. (1994). Normal science and its dangers. In Criticism and the Growth of Knowledge. Lakatos, Imre & Musgrave, Alan, eds. Cambridge: Cambridge University Press, pp. 51–58.Google Scholar
Pugh, E. N. (1975). Rushton's paradox: rod dark adaptation after flash photolysis. Journal of Physiology, 248, 413–431.CrossRefGoogle ScholarPubMed
Purkinje, J. (1825). Beobachtungen und Versuche zur Physiologie der Sinne. Neue Beiträge zur Kenntniss des Sehens in subjectiver Hinsicht, Zweiter band. Berlin: Reimer.
Rose, A. (1953). Quantum and noise limitations of the visual process. Journal of the Optical Society of America, 43, 715–716.CrossRefGoogle ScholarPubMed
Rushton, W. A. H. (1957). Physical measurement of cone pigment in the living human eye. Nature, 179, 571–573.CrossRefGoogle ScholarPubMed
Rushton, W. A. H. (1961a). Dark-adaptation and the regeneration of rhodopsin. Journal of Physiology, 156, 166–178.CrossRefGoogle ScholarPubMed
Rushton, W. A. H. (1961b). Rhodopsin measurements and dark-adaptation in a subject deficient in cone vision. Journal of Physiology, 156, 193–205.CrossRefGoogle Scholar
Rushton, W. A. H. (1965a). The Ferrier Lecture: visual adaptation. Proceedings of the Royal Society of London, B, 162, 20–46.CrossRefGoogle Scholar
Rushton, W. A. H. (1965b). Bleached rhodopsin and visual adaptation. Journal of Physiology, 181, 645–655.CrossRefGoogle Scholar
Rushton, W. A. H. (1966). Densitometry of pigments in rods and cones of normal and color defective subjects. Investigative Ophthalmology, 5, 233–241.Google ScholarPubMed
Rushton, W. A. H. (1972). Light and dark adaptation. Investigative Ophthalmology, 11, 503–517.Google ScholarPubMed
Rushton, W. A. H. & Campbell, F. W. (1954). Measurement of rhodopsin in the living human eye. Nature, 174, 1096–1097.CrossRefGoogle ScholarPubMed
Rushton, W. A. H., Campbell, F. W., Hagins, W. A. & Brindley, G. S. (1955). The bleaching and regeneration of rhodopsin in the living eye of the albino rabbit and of man. Optica Acta, 1, 183–190.Google Scholar
Rushton, W. A. H., Fulton, A. B. & Baker, H. D. (1969). Dark-adaptation and the rate of pigment regeneration. Vision Research, 9, 1473–1479.CrossRefGoogle ScholarPubMed
Rushton, W. A. H. & Powell, D. S. (1972a). The early phase of dark adaptation. Vision Research, 12, 1083–1093.CrossRefGoogle ScholarPubMed
Rushton, W. A. H. & Powell, D. S. (1972b). The rhodopsin content and the visual threshold of human rods. Vision Research, 12, 1073–1081.CrossRefGoogle ScholarPubMed
Rushton, W. A. H. & Westheimer, G. (1962). The effect upon the rod threshold of bleaching neighbouring rods. Journal of Physiology, 164, 318–329.CrossRefGoogle ScholarPubMed
Saugstad, P. & Saugstad, A. (1959). The Duplicity Theory: an evaluation. Advances in Ophthalmology, 9, 1–51.Google Scholar
Schjelderup, H. K. (1920). Zur Theorie der Farbenempfindungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. II. Abteilung. Zeitschrift für Sinnesphysiologie, 51 Band, 19–45.Google Scholar
Schneeweis, D. M. & Schnapf, J. L. (1995). Photovoltage of rods and cones in the macaque retina. Science, 268, 1053–1056.CrossRefGoogle ScholarPubMed
Schultze, M. (1866). Zur Anatomie und Physiologie der Retina. Archiv für mikroskopische Anatomie, Band 2, 175–286..CrossRefGoogle Scholar
Sharpe, L. T. (1990). The light-adaptation of the human rod visual system. In Night Vision: Basic, Clinical and Applied Aspects. Hess, R. F., Sharpe, L. T. & Nordby, K., eds. Cambridge: Cambridge University Press, pp. 49–124.Google Scholar
Shlaer, S., Smith, E. L. & Chase, A. M. (1941/1942). Visual acuity and illumination in different spectral regions. Journal of General Physiology, 25, 553–569.CrossRefGoogle Scholar
Stabell, B. (1967a). Rods as color receptors in scotopic vision. Scandinavian Journal of Psychology, 8, 132–138.CrossRefGoogle ScholarPubMed
Stabell, B., Nordby, K. & Stabell, U. (1987). Light-adaptation of the human rod system. Clinical Vision Sciences, 2, 83–91.Google Scholar
Stabell, B. & Stabell, U. (1971a). Facilitation of chromatic cone activity by rod activity. I. Red-related cone activity. Scandinavian Journal of Psychology, 12, 99–105.CrossRefGoogle ScholarPubMed
Stabell, B. & Stabell, U. (1973a). Chromatic rod vision IX: a theoretical survey. Vision Research, 13, 449–450.CrossRefGoogle ScholarPubMed
Stabell, B. & Stabell, U. (1974). Chromatic rod-cone interaction. Vision Research, 14, 1389–1392.CrossRefGoogle ScholarPubMed
Stabell, B. & Stabell, U. (1976). Effects of rod activity on color threshold. Vision Research, 16, 1105–1110.CrossRefGoogle Scholar
Stabell, B., Stabell, U. & Nordby, K. (1986b). Dark-adaptation in a rod monochromat: effect of stimulus size, exposure time and retinal eccentricity. Clinical Vision Sciences, 1, 75–80.Google Scholar
Stabell, B. & Stabell, U. (1998). Chromatic rod-cone interaction during dark adaptation. Journal of the Optical Society of America A, 15, 2809–2815.CrossRefGoogle ScholarPubMed
Stabell, U. (1967b). Rods as color receptors in photopic vision. Scandinavian Journal of Psychology, 8, 139–144.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1965). Rods as color receptors. Scandinavian Journal of Psychology, 6, 195–200.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1971b). Facilitation of chromatic cone activity by rod activity. II. Variation of chromatic-related cone activity. Scandinavian Journal of Psychology, 12, 168–174.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1971c). Chromatic rod vision II: wavelength of pre-stimulation varied. Scandinavian Journal of Psychology, 12, 282–288.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1973b). Chromatic rod activity at mesopic intensities. Vision Research, 13, 2255–2260.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1975). Scotopic contrast hues triggered by rod activity. Vision Research, 15, 1115–1118.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1978). Scotopic hues of simultaneous contrast. Vision Research, 18, 1491–1496.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1989). Dark-adaptation mechanisms of the long-wave cones. Scandinavian Journal of Psychology, 30, 207–219.CrossRefGoogle Scholar
Stabell, U. & Stabell, B. (1994). Mechanisms of chromatic rod vision in scotopic illumination. Vision Research, 34, 1019–1027.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1996). Long-term rod dark adaptation in man: threshold measurements, rhodopsin regeneration and allosteric sensitivity regulation. An evaluation. Scandinavian Journal of Psychology, 37, 259–268.CrossRefGoogle ScholarPubMed
Stabell, U., Stabell, B. & Fugelli, A. (1992). Mechanisms of long-term dark adaptation. Scandinavian Journal of Psychology, 33, 12–19.CrossRefGoogle ScholarPubMed
Stabell, U., Stabell, B., Hisdal, B. & Nordby, K. (1990). Rod and cone dark adaptation. Clinical Vision Sciences, 4, 345–351.Google Scholar
Stabell, U., Stabell, B. & Nordby, K. (1986a). Dark-adaptation of the human rod system: a new hypothesis. Scandinavian Journal of Psychology, 27, 175–183.CrossRefGoogle ScholarPubMed
Stabell, U., Stabell, B. & Nordby, K. (1989). On the photochemical theory of dark adaptation. In Basic Issues in Psychology. Bjørgen, I. A., ed. London: Sigma, pp. 247–254.Google Scholar
Stiles, W. S. (1939). The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proceedings of the Royal Society of London, B, 127, 64–105.CrossRefGoogle Scholar
Stiles, W. S. (1978). Mechanisms of Colour Vision: Selected Papers of W. S. Stiles F. R. S. with a New Introductory Essay. London: Academic Press.Google Scholar
Stiles, W. S. & Crawford, B. A. (1932). Equivalent adaptation levels in localized retinal areas. Report of a joint discussion on vision held on 3 June 1932 at the Imperial College of Science by the Physical and Optical Societies. London: Cambridge University Press.
Stromeyer III, C. F. (1974a). Form-specific colour after effects in scotopic illumination. Nature, 250, 266–268.CrossRefGoogle Scholar
Stromeyer III, C. F. (1974b). Rod signals in higher color mechanisms: the McCollough color aftereffect observed in scotopic illumination. In Sensation and Measurement. Moskowitz, H. R., Scharf, B. & Stevens, J. C., eds. Boston: Reidel, pp. 403–410.Google Scholar
Svaetichin, G. (1953). The cone action potential. Acta Physiologica Scandinavica, 106, 565–600.Google Scholar
Tansley, K. (1931). The regeneration of visual purple: its relation to dark adaptation and night blindness. Journal of Physiology, 71, 442–458.CrossRefGoogle ScholarPubMed
Temme, L. A. & Frumkes, T. E. (1977). Rod-cone interaction in human scotopic vision III: rods influence cone increment thresholds. Vision Research, 17, 681–685.CrossRefGoogle ScholarPubMed
Trezona, P. W. (1960). The after-effects of a white light stimulus. Journal of Physiology, 150, 67–78.CrossRefGoogle ScholarPubMed
Trezona, P. W. (1970). Rod participation in the ‘blue’ mechanism and its effect on colour matching. Vision Research, 10, 317–332.CrossRefGoogle ScholarPubMed
Tschermak, A. (1902). Die Hell-Dunkeladaptation des Auges und die Funktion der Stäbchen und Zapfen. In Ergebnisse der Physiologie. Asher, L. & Spiro, K., eds. Jahrgang, Erster, II. Abteilung, Bergmann: Wiesbaden, Biophysik und Psychophysik, pp. 695–800.Google Scholar
Tschermak, A. (1929). Theorie des Farbensehens. In Handbuch der Normalen und Pathologischen Physiologie. Bethe, A., Bergmann, G., Embden, G. & Ellinger, A., eds. Band 12 (1), Berlin: Springer, pp. 550–584.Google Scholar
Volbrecht, V. J., Nerger, J. L., Imhoff, S. M. & Ayde, C. J. (2000). Effect of the short-wavelength-sensitive-cone mosaic and rods on the locus of unique green. Journal of the Optical Society of America A, 17, 628–634.CrossRefGoogle ScholarPubMed
Wald, G. (1933). Vitamin A in the retina. Nature, 132, 316–317.CrossRefGoogle Scholar
Wald, G. (1934). Carotenoids and the vitamin A cycle in vision. Nature, 134, 65.CrossRefGoogle Scholar
Wald, G. (1934/1935). Vitamin A in eye tissues. Journal of General Physiology, 18, 905–915.CrossRefGoogle Scholar
Wald, G. (1935/1936). Carotenoids and the visual cycle. Journal of General Physiology, 19, 351–371.CrossRefGoogle ScholarPubMed
Wald, G. (1937a). Visual purple system in fresh-water fishes. Nature, 139, 1017–1018.CrossRefGoogle Scholar
Wald, G. (1937b). Photo-labile pigments of the chicken retina. Nature, 140, 545–546.CrossRefGoogle Scholar
Wald, G. (1937/1938). Area and visual threshold. Journal of General Physiology, 21, 269–287.CrossRefGoogle Scholar
Wald, G. (1938/1939). The porphyropsin visual system. Journal of General Physiology, 22, 775–794.CrossRefGoogle Scholar
Wald, G. (1949a). The photochemistry of vision. Documenta Ophthalmologica, 3, 94–137.CrossRefGoogle Scholar
Wald, G. (1949b). The enzymatic reduction of the retinenes to the vitamin A. Science, 109, 482–483.CrossRefGoogle Scholar
Wald, G. (1954). On the mechanism of the visual threshold and visual adaptation. Science, 119, 887–892.CrossRefGoogle ScholarPubMed
Wald, G. (1958). The Selig Hecht Commemorative Lecture. Retinal chemistry and the physiology of vision. In Visual Problems of Colour. London: Her Majesty's Stationery Office, National Physical Laboratory Symposium No. 8, Vol. 1, pp. 7–61.Google Scholar
Wald, G. (1964). The receptors of human color vision. Science, 145, 1007–1017.CrossRefGoogle ScholarPubMed
Wald, G. (1967). Blue-blindness in the normal fovea. Journal of the Optical Society of America, 57, 1289–1301.CrossRefGoogle ScholarPubMed
Wald, G. (1968). Molecular basis of visual excitation. Science, 162, 230–239.CrossRefGoogle ScholarPubMed
Walters, H. V. & Wright, W. D. (1943). The spectral sensitivity of the fovea and extrafovea in the Purkinje range. Proceedings of the Royal Society of London, B, 131, 340–361.CrossRefGoogle Scholar
Weale, R. A. (1957). Trichromatic ideas in the seventeenth and eighteenth centuries. Nature, 179, 648–651.CrossRefGoogle ScholarPubMed
Westheimer, G. (1965). Spatial interaction in the human retina during scotopic vision. Journal of Physiology, 181, 881–894.CrossRefGoogle ScholarPubMed
Westheimer, G. (1968). Bleached rhodopsin and retinal interaction. Journal of Physiology, 195, 97–105.CrossRefGoogle ScholarPubMed
Westheimer, G. (1970). Rod-cone independence for sensitizing interaction in the human retina. Journal of Physiology, 206, 109–116.CrossRefGoogle ScholarPubMed
Wiesel, T. N. & Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29, 1115–1156.CrossRefGoogle ScholarPubMed
Willmer, E. N. (1946). Retinal Structure and Colour Vision. Cambridge: Cambridge University Press.Google Scholar
Willmer, E. N. (1950). Low threshold rods and the perception of blue. Journal of Physiology, 11, 17P.Google Scholar
Willmer, E. N. (1961). Human colour vision and the perception of blue. Journal of Theoretical Biology, 2, 141–179.CrossRefGoogle Scholar
Wright, W. D. (1946). Researches on Normal and Defective Colour Vision. London: Henry Kimpton,.Google Scholar
Wässle, H., Grünert, U., Chun, M-H. & Boycott, B. B. (1995). The rod-pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. The Journal of Comparative Neurology, 361, 537–551.CrossRefGoogle ScholarPubMed
Yeh, T., Lee, B. B. & Kremers, J. (1996). The time course of adaptation in macaque retinal ganglion cells. Vision Research, 36, 913–931.CrossRefGoogle ScholarPubMed
Yin, L., Smith, R. G., Sterling, P. & Brainard, D. H. (2006). Chromatic properties of horizontal and ganglion cell responses follow a dual gradient in cone opsin expression. Journal of Neuroscience, 26 (47), 12351–12361.CrossRefGoogle ScholarPubMed
Young, T. (1802a). The Bakerian Lecture. On the theory of light and colours. Philosophical Transactions of the Royal Society of London, 92, 12–48.CrossRefGoogle Scholar
Young, T. (1802b). An account of some cases of the production of colours, not hitherto described. Philosophical Transactions of the Royal Society of London, 92, 387–397.CrossRefGoogle Scholar
Young, T. (1807). Lecture 37: on physical optics. A Course of Lectures on Natural Philosophy and the Mechanical Arts, Vol. I. London: William Savage Bedford Bury, pp. 434–446.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bjørn Stabell, Universitetet i Oslo, Ulf Stabell, Universitetet i Oslo
  • Book: Duplicity Theory of Vision
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605413.033
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bjørn Stabell, Universitetet i Oslo, Ulf Stabell, Universitetet i Oslo
  • Book: Duplicity Theory of Vision
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605413.033
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bjørn Stabell, Universitetet i Oslo, Ulf Stabell, Universitetet i Oslo
  • Book: Duplicity Theory of Vision
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605413.033
Available formats
×