Skip to main content Accessibility help
×
  • Cited by 8
Publisher:
Cambridge University Press
Online publication date:
January 2010
Print publication year:
2009
Online ISBN:
9780511605413

Book description

The duplicity theory of vision concerns the comparisons (both differences and similarities) and interaction between the cone and rod systems in the visual pathways, with the assumption that the cone system is active during daylight vision and the rod system functions in low light (night time). Research on this aspect of vision dates back to the 17th century and the work of Newton, and is still ongoing today. This book describes the origin and development of this fundamental theory within vision research - whilst also examining the Young–Helmholtz trichromatic colour theory, and the opponent colour theory of Hering - and presents evidence and ideas in light of modern conceptions of the theory. Written for academic researchers and graduate students, the book brings back knowledge of the tradition of duplicity theory, inspiring questions related to anatomy, comparative biology, molecular biology, photochemistry, physiology, genetics, phylogenetics and psychophysics.

Reviews

"Duplicity Theory of Vision presents a comprehensive and detailed account of an important area of research in vision. The text is well written and organized in a manner that is accessible for the degree of technical material that is presented. I recommend it to those who are primarily interested in a historical account of vision research."
Paula Goolkasian, PsycCRITIQUES

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Abramov, I. (1968). Further analysis of the responses of LGN cells. Journal of the Optical Society of America, 58, 574–579.
Aguilar, M. & Stiles, W. S. (1954). Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta, 1, 59–65.
Ahn, S. J. & MacLeod, I. A. (1993). Link-specific adaptation in the luminance and chromatic channels. Vision Research, 33, 2271–2286.
Aubert, H. (1865). Physiologie der Netzhaut. Morgenstern: Breslau.
Baehr, W., Karan, S., Maeda, T.et al. (2007). The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. Journal of Biological Chemistry, 282, 8837–8847.
Barlow, H. B. (1957). Increment thresholds at low intensities considered as signal/noise discriminations. Journal of Physiology, 136, 469–488.
Barlow, H. B. (1964). Dark-adaptation: a new hypothesis. Vision Research, 4, 47–58.
Barlow, H. B. (1972). Dark and light adaptation: psychophysics. In Handbook of Sensory Physiology, vol. VII/4 Visual Psychophysics. Jameson, D. & Hurvich, L. M., eds. Berlin: Springer, pp. 1–28.
Barlow, H. B. & Andrews, D. P. (1973). The site at which rhodopsin bleaching raises scotopic threshold. Vision Research, 13, 903–908.
Barlow, H. B., Fitzhugh, R. & Kuffler, S. W. (1957). Change of organization in the receptive fields of the cat's retina during dark adaptation. Journal of Physiology, 137, 338–354.
Barlow, H. B. & Sparrock, J. M. (1964). The role of afterimages in dark adaptation. Science, 144, 1309–1314.
Blakemore, C. B. & Rushton, W. A. H. (1965). Dark adaptation and increment threshold in a rod monochromat. Journal of Physiology, London, 181, 612–628.
Blanchard, J. (1918). The brightness sensibility of the retina. Physical Review, 11, 81–99.
Blick, D. W. & MacLeod, D. I. A. (1978). Rod threshold: influence of neighboring cones. Vision Research, 18, 1611–1616.
Boll, F. (1877). Zur Anatomie und Physiologie der Retina. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Akademie der Wissenschaften, Berlin: Der KGL, pp. 783–788.
Boll, F. (1878). Zur Physiologie des Sehens und der Farbenempfindung. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Akademie der Wissenschaften, Berlin: Der KGL, pp. 2–7.
Boring, E. G. (1957). A History of Experimental Psychology. New York: Appleton-Century-Crofts.
Brown, P. K. & Wald, G. (1964). Visual pigments in single rods and cones of the human retina. Science, 144, 45–52.
Buck, S. L. (1985). Cone-rod interaction over time and space. Vision Research, 25, 907–916.
Buck, S. L. (1997). Influence of rod signals on hue perception: evidence from successive contrast. Vision Research, 37, 1295–1301.
Buck, S. L. (2001). What is the hue of rod vision?Color Research and Application, 26 (suppl.), S57–S59.
Buck, S. L. (2004). Rod-cone interactions in human vision. In The Visual Neurosciences. Chalupa, L. M. & Werner, J. S., eds. Cambridge, MA: The MIT Press, pp. 863–878.
Buck, S. L., Knight, R. & Bechtold, J. (2000). Opponent-color models and the influence of rod signals on the loci of unique hues. Vision Research, 40, 3333–3344.
Buck, S. L., Knight, R., Fowler, G. & Hunt, B. (1998). Rod influence on hue-scaling functions. Vision Research, 38, 3259–3263.
Buck, S. L., Peeples, D. R. & Makous, W. (1979). Spatial patterns of rod-cone interaction. Vision Research, 19, 775–782.
Buck, S. L. & Makous, W. (1981). Rod-cone interaction on large and small backgrounds. Vision Research, 21, 1181–1187.
Buck, S. L., Stefurak, D. L., Moss, C. & Regal, D. (1984). The time-course of rod-cone interaction. Vision Research, 24, 543–548.
Burns, M. E. & Lamb, T. (2004). Visual transduction by rod and cone photoreceptors. In The Visual Neurosciences. Chalupa, L. M. & Werner, J. S., eds. Cambridge, MA: The MIT Press, pp. 215–233.
Cajal, S. R. y (1894). Die Retina der Wirbelthiere. Untersuchungen mit der Golgi-Cajal`schen Chromsilbermethode und der Ehrlich`schen Methylenblaufärbung. Wiesbaden: Von J. F. Bergmann.
Cajal, S. R. y (1937). Recollections of My Life. In Memories of the American Philosophical Society, Vol. VIII, Part II, 1937. Translated by Horne Craigie, E. with the assistance of Cano, Juan. Philadelphia: The American Philosophical Society.
Cameron, A. M., Mahroo, O. A. R. & Lamb, T. D. (2006). Dark adaptation of human rod bipolar cells measured from the b-wave of the scotopic electroretinogram. Journal of Physiology, 575, 507–526.
Campbell, F. W. & Rushton, W. A. H. (1955). Measurement of the scotopic pigment in the living human eye. Journal of Physiology, 130, 131–147.
Chalmers, A. F. (1986). What is This Thing Called Science?Philadelphia: Open University Press.
Cohen, B. (1978). Isaac Newton's Papers and Letters on Natural Philosophy. Cambridge, MA: Harvard University Press.
Cone, R. A. (1963/1964). The rat electroretinogram I: contrasting effects of adaptation on the amplitude and latency of the b-wave. Journal of General Physiology, 47, 1089–1105.
Craik, K. J. W. & Vernon, M. D. (1941). The nature of dark adaptation. British Journal of Psychology, 32, 62–81.
Crawford, B. H. (1940). The effect of field size and pattern on the change of visual sensitivity with time. Proceedings of the Royal Society of London, B, 129, 94–106.
Crawford, C. B. (1947). Visual adaptation in relation to brief conditioning stimuli. Proceedings of the Royal Society of London, B, 134, 283–302.
Crozier, W. J. & Wolf, E. (1938/1939). The flicker response contour for the gecko (rod retina). Journal of General Physiology, 22, 555–566.
Daw, N. W., Jensen, R. J. & Brunken, W. J. (1990). Rod pathways in mammalian retinae. Trends in Neurosciences, 13, 110–115.
Dean, D. M., Nguitragool, W., Miri, A., McCabe, S. L. & Zimmerman, A. L. (2002). All-trans-retinal shuts down rod cyclic nucleotide gated ion channels: a novel role for photoreceptor retinoids in response to bright light?Proceedings of the National Academy of Sciences of the United States of America, 99 (12), 8372–8377.
Valois, R. L. (1965). Analysis and coding of color vision in the primate visual system. Cold Spring Harbor Symposia on Quantitative Biology, 30, 567–579.
Valois, R. L., Abramov, I. & Jacobs, G. H. (1966). Analysis of response patterns of LGN cells. Journal of the Optical Society of America, 56, 966–977.
Vries, H. (1943). The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye. Physica, 10, 553–564.
Donner, K. O. & Reuter, T. (1968). Visual adaptation of the rhodopsin rods in the frog's retina. Journal of Physiology, 199, 59–87.
Dowling, J. E. (1960). Chemistry of visual adaptation in the rat. Nature, 188, 114–118.
Dowling, J. E. (1967). The site of visual adaptation. Science, 155, 273–279.
Dowling, J. E. & Ripps, H. (1970). Visual adaptation in the retina of the skate. Journal of General Physiology, 56, 491–520.
Dreher, E. (1912). Methodische Untersuchung der Farbentonänderungen homogener Lichter bei zunehmend indirektem Sehen und veränderter Intensität. Zeitschrift für Sinnesphysiologie, 46, 1–82.
Du Croz, J. J. & Rushton, W. A. H. (1966). The separation of cone mechanisms in dark adaptation. Journal of Physiology, 183, 481–496.
Dunn, F. A. & Rieke, F. (2006). The impact of photoreceptor noise on retinal gain controls. Current Opinion in Neurobiology, 16, 363–370.
Ebbinghaus, H. (1893). Theorie des Farbensehens. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 5, 145–238.
Fain, G. L., Lamb, T. D., Matthews, H. R. & Murphy, R. L. W. (1989). Cytoplasmic calcium as the messenger for light adaptation in salamander rods. Journal of Physiology, 416, 215–243.
Fain, G. L. & Matthews, H. R. (1990). Calcium and the mechanism of light adaptation in vertebrate photoreceptors. Trends in Neuroscience, 13, 378–384.
Fesenko, E. E., Kolosnikov, S. S. & Lyubarsky, A. L. (1985). Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature, 313, 310–313.
Flamant, F. & Stiles, W. S. (1948). The directional and spectral sensitivities of the retinal rods to adapting fields of different wave-lengths. Journal of Physiology, 107, 187–202.
Frumkes, T. E., Sekuler, M. D., Barris, M. C., Reiss, E. H. & Chalupa, L. M. (1973). Rod-cone interaction in human scotopic vision – I. temporal analysis. Vision Research, 13, 1269–1282.
Frumkes, T. E., Sekuler, M. D. & Reiss, E. H. (1972). Rod-cone interaction in human scotopic vision. Science, 175, 913–914.
Frumkes, T. E. & Temme, L. A. (1977). Rod-cone interaction in human scotopic vision: II. Cones influence rod increment thresholds. Vision Research, 17, 673–679.
Goethe, J. W. (1810). Johann Wolfgang Goethe Sämtliche Werke. Briefe, Tagebücher und Gespräche, Band 23/1, In Johann Wolfgang Goethe zur Farbenlehre. Manfred Wenzel, ed. (1991). Frankfurt am Main: Deutscher Klassiker Verlag.
Gouras, P. & Link, K. (1966). Rod and cone interaction in dark adapted monkey ganglion cells. Journal of Physiology, 184, 499–510.
Graham, C. H. & Hartline, H. K. (1935). The response of single visual sense cells to lights of different wave-lengths. Journal of General Physiology, 18, 917–931.
Granit, R. (1938). Processes of adaptation in the vertebrate retina in the light of recent photochemical and electrophysiological research. Documenta Ophthalmologica, 1, 7–77.
Granit, R. (1947). Sensory Mechanisms of the Retina. London: Oxford University Press.
Granit, R. (1955). Receptors and Sensory Perception. New Haven: Yale University Press.
Granit, R. (1963). Sensory Mechanisms of the Retina, with an Appendix on Electro-retinography. London: Hafner Publishing Company.
Granit, R., Holmberg, T. & Zewi, M. (1938). On the mode of action of visual purple on the rod cell. Journal of Physiology, 94, 430–440.
Granit, R., Munsterhjelm, A. & Zewi, M. (1939). The relation between concentration of visual purple and retinal sensitivity to light during dark-adaptation. Journal of Physiology, 96, 31–44.
Grassmann, H. (1853). Zur Theorie der Farbenmischung. Annalen der Physik und Chemie. Poggendorff, J. C., ed. Leipzig: von Johann Ambrosius Barth, pp. 69–84.
Greene, B. (2005). The Fabric of the Cosmos. London: Penguin Books.
Gribbin, J. (2003). Science: A History. London: Penguin Books.
Grünert, U. & Wässle, H. (1996). Glycine receptors in the rod pathway of the macaque monkey retina. Visual Neuroscience, 13, 101–115.
Hanssen, H. S. (2000). Theofrast fra Eressos. Kristiansand, Norway: Nordic Academic Press.
Hartline, H. K. (1940). The nerve messages in the fibers of the visual pathway. Journal of the Optical Society of America, 30, 239–247.
Hecht, S. (1919/1920a). The photochemical nature of the photosensory process. Journal of General Physiology, 2, 229–246.
Hecht, S. (1919/1920b). Intensity and the process of photoreception. Journal of General Physiology, 2, 337–347.
Hecht, S. (1919/1920c). The dark adaptation of the human eye. Journal of General Physiology, 2, 499–517.
Hecht, S. (1921/1922). The nature of foveal dark adaptation. Journal of General Physiology, 4, 113–139.
Hecht, S. (1937). Rods, cones, and the chemical basis of vision. Physiological Review, 17, 239–290.
Hecht, S., Haig, C. & Chase, A. (1936/1937). The influence of light adaptation on subsequent dark adaptation of the eye. Journal of General Physiology, 20, 831–850.
Hecht, S., Haig, C. & Wald, G. (1935/1936). The dark adaptation of retinal fields of different size and location. Journal of General Physiology, 19, 321–337.
Hecht, S. & Schlaer, S. (1938). An adaptometer for measuring human dark adaptation. Journal of the Optical Society of America, 28, 269–275.
Helmholtz, H. (1852). Ueber die Theorie der zusammengesetzten Farben. Annalen der Physik und Chemie, 87 Band, Herausgegeben zu Berlin von J. C. Poggendorff, Johann Ambrosius Barth, Leipzig, pp. 45–66.
Helmholtz, H. (1855). Ueber die Zusammensetzung von Spektralfarben. Annalen der Physik und Chemie, 94 Band, Herausgegeben zu Berlin von J. C. Poggendorff, Johann Ambrosius Barth, Leipzig, pp. 1–28.
Helmholtz, H. (1867). Handbuch der Physiologischen Optik. Leipzig: Voss.
Helmholtz, H. (1896). Handbuch der Physiologischen Optik. Leipzig: Voss.
Helmholtz, H. (1911). In Helmholtz's Treatise on Physiological Optics. Translated from the third German edition, 1962, James, P. C. Southall, ed. New York: Dover Publications, Volumes I and II.
Hering, E. (1878). Zur Lehre vom Lichtsinne. Wien: Carl Gerold Sohn`s.
Hering, E. (1964). Outlines of a Theory of the Light Sense by Evald Hering. Translated by Hurvich, L. M. and Jameson, D.. Cambridge, MA: Harvard University Press.
Ingling, C. R., Lewis, A. L., Loose, D. R. & Myers, K. J. (1977). Cones change rod sensitivity. Vision Research, 17, 555–563.
Kaupp, U. B., Hanke, W., Simmoteit, R. & Lühring, H. (1988). Electrical and biochemical properties of the cGMP-gated cation channel from rod photo- receptors. Cold Spring Harbor Symposia on Quantitative Biology, 53, 407–415.
Kaupp, U. B., Niidome, T., Tanabe, T.et al. (1989). Primary structure and functional expression from complementary DNA of the rod photo-receptor cyclic GMP-gated channel. Nature, 342, 762–766.
Kawamura, S. (1993). Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature, 362, 855–857.
Knight, R. & Buck, S. L. (2001). Rod influence on hue perception: effect of background light level. Color Research and Application, 26 (suppl.), S60–S64.
Knight, R. & Buck, S. L. (2002). Time-dependent changes of rod influence on hue perception. Vision Research, 42, 1651–1662.
Kohlrausch, A. (1931). Tagessehen, Dämmersehen, Adaptation. In Handbuch der Normalen und Pathologischen Physiologie. Bethe, A., Bergmann, G., Embden, G. & Ellinger, A., eds. Berlin: Springer, 12 (2), pp. 1499–1594.
König, A. (1894). Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Zweiter halbband, Juni bis December. Berlin: Der Königlichen Akademie der Wissenschaften, pp. 577–598.
König, A. & Dieterici, C. (1893). Die Grundempfindungen in normalen und anomalen Farbensystemen und ihre Intensitätsverteilung im Spektrum. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 4, 241–347.
Kries, J. (1894). Ueber den Einfluss der Adaptation auf Licht- und Farbenempfindung und über die Funktion der Stäbchen. Berichte der Naturforschenden Gesellschaft zu Freiburg I. B, 9, 61–70.
Kries, J. (1896). Über die Funktion der Netzhautstäbchen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 9, 81–123.
Kries, J. (1911). II. Theories of vision. In Helmholtz's Treatise on Physiological Optics. Translated from the third German edition, 1962. Southall, J. P. C., ed. Volumes I and II. New York: Dover Publications, pp. 426–454.
Kries, J. (1929). Zur Theorie des Tages- und Dämmerungssehens. In Handbuch der Normalen und Pathologischen Physiologie, Band 12. Bethe, A., Bergmann, G., Embden, G. & Ellinger, A., eds. Berlin: Springer, pp. 679–713.
Kries, J. & Nagel, W. (1896). Über den Einfluss von Lichtstärke und Adaptation auf das Sehen des Dichromaten (Grünblinden). Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 12, 1–38.
Kuhn, T. S. (1970). The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.
Kuhn, T. S. (1994). Reflections on my critics. In Criticism and the Growth of Knowledge. Lakatos, Imre & Musgrave, Alan, eds. Cambridge: Cambridge University Press, pp. 231–278.
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.
Kühne, W. (1877a). Ueber den Sehpurpur. Untersuchungen aus dem Physiologischen Institute der Universität Heidelberg, Band I, Heft I. Heidelberg: Carl Winter, pp. 15–103.
Kühne, W. (1877b). Ueber die Verbreitung des Sehpurpurs im menschlichen Auge. Untersuchungen aus dem Physiologischen Institute der Universität Heidelberg, Band I, Heft II. Heidelberg: Carl Winter, pp. 105–113.
Kühne, W. (1877–1878). Ueber den Sehpurpur. Untersuchungen aus dem Physiologischen Institute der Universität Heidelberg, Band I & II. Heidelberg: Carl Winter.
Kühne, W. (1879). Chemische Vorgänge in der Netzhaut. Handbuch der Physiologie, Dritter Band. Leipzig: Vogel, pp. 235–342.
Lamb, T. D. (1981). The involvement of rod photoreceptors in dark adaptation. Vision Research, 21, 1773–1782.
Lamb, T. D. (1990). Dark adaptation: a re-examination. In Night Vision, Basic, Clinical and Applied Aspects. Hess, R. F., Sharpe, L. T. & Nordby, K., eds. Cambridge: Cambridge University Press, pp. 177–222.
Latch, M. & Lennie, P. (1977). Rod-cone interaction in light adaptation. Journal of Physiology, 269, 517–534.
Lennie, P. & Fairchild, M. D. (1994). Ganglion cell pathways for rod vision. Vision Research, 34, 477–482.
Lie, I. (1963). Dark adaptation and the photochromatic interval. Documenta Ophthalmologica, 17, 411–510.
Lipetz, L. E. (1961). A mechanism of light adaptation. Science, 133, 639–640.
Loeser, L. (1904). Über den Einfluss der Dunkeladaptation auf die spezifische Farbenschwelle. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 36, 1–18.
Lythgoe, R. J. (1940). The mechanism of dark adaptation: a critical resumé. British Journal of Ophthalmology, 24, 21–43.
Mach, E. (1865). Über die Wirkung der räumlichen Vertheilung des Lichtreizes auf die Netzhaut. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, 52, Abteilung 2, 303–322.
Makous, W. & Booth, R. (1974). Cones block signals from rods. Vision Research, 14, 2285–2294.
Marks, W. B., Dobelle, W. H. & MacNichol, E. F. (1964). Visual pigments of single primate cones. Science, 143, 1181–1182.
Matthews, H. R., Murphy, R. L. W., Fain, G. L. & Lamb, T. D. (1988). Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature, 334, 67–69.
Maxwell, J. C. (1855). Experiments on colour, as perceived by the eye, with remarks on colour-blindness. From the Transactions of the Royal Society of Edinburgh, Vol. 21; reprinted in The Scientific Papers of James Clerk Maxwell, 1890. Niven, W. D., ed. Cambridge: Cambridge University Press, Vol. I, pp. 126–154.
Maxwell, J. C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum. Philosophical Transactions of the Royal Society of London, 150, 57–84.
Maxwell, J. C. (1872). On colour vision. From the Proceedings of the Royal Institution of Great Britain, Vol. 6, 1872; reprinted in The Scientific Papers of James Clerk Maxwell, 1890. Niven, W. D., ed. Cambridge: Cambridge University Press, Vol. II, pp. 267–279.
McCabe, S. L., Pelosi, D. M., Tetreault, M.et al. (2004). All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels. Journal of General Physiology, 123, 521–531.
McCann, J. J. & Benton, J. L. (1969). Interaction of the long-wave cones and the rods to produce colour sensations. Journal of the Optical Society of America, 59, 103–107.
McKee, S. P., McCann, J. J. & Benton, J. L. (1977). Color vision from rod and long-wave cone interactions: conditions in which rods contribute to multicoloured images. Vision Research, 17, 175–185.
Mitarai, G., Svaetichin, G., Vallecalle, E.et al. (1961). Glia-neuron interaction and adaptation mechanisms of the retina. In Neurophysiologie und Psychophysik des visuellen Systems. Jung, R. and Kornhuber, H., eds. Berlin: Springer, pp. 463–481.
Mollon, J. D. & Polden, P. G. (1979). Post-receptoral adaptation. Vision Research, 19, 435–440.
Monod, J. (1970). Le Hasard et la Nécessité. Paris: Du Seuil.
Monod, J., Wyman, J. & Changeux, J-P. (1965). On the nature of allosteric transitions: a plausible model. Journal of Molecular Biology, 12, 88–118.
Müller, G. E. (1896). Zur Psychophysik der Gesichtsempfindungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, Zehnter Band, 321–413.
Müller, G. E. (1897). Zur Psychophysik der Gesichtsempfindungen. Die besondere Funktionsweise der Stäbchen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, Vierzhnter Band, 161–193.
Müller, G. E. (1923). Zur Theorie des Stäbchenapparates und der Zapfenblindheit. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. II. Abteilung. Zeitschrift für Sinnesphysiologie, 54 Band, 9–48 and 102–145.
Müller, G. E. (1930). Über die Farbenempfindungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. Ergänzungsband, 17, 1–434.
Müller, J. (1840). Handbuch der Physiologie des Menschen, Zweiter Band. Coblenz: Verlag von J. Hölscher.
Nagel, W. (1911). Adaptation, twilight vision, and the duplicity theory. In Handbuch der Physiologischen Optik von H. von Helmholtz (Dritte Auflage). Gullstrand, A., Kries, J. & Nagel, W., eds. Band, Zweiter, Hamburg and Leipzig: Leopold Voss, pp. 313–394.
Naka, K. I. & Rushton, W. H. A. (1968). S-potential and dark adaptation in fish. Journal of Physiology, London, 194, 259–269.
Nerger, J. L., Volbrecht, V. J. & Ayde, C. J. (1995). Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity. Journal of the Optical Society of America A, 12, 1225–1232.
Nerger, J. L., Volbrecht, V. J., Ayde, C. J. & Imhoff, S. M. (1998). Effect of the S-cone mosaic and rods on red/green equilibria. Journal of the Optical Society of America A, 15, 2816–2826.
Newton, I. (1671/1672). In Philosophical Transactions of the Royal Society of London, Vol. 6, 3075–3087.
Newton, I. (1675). In Isaac Newton's Papers and Letters on Natural Philosophy. (Cohen, B., ed., second edition, 1978, Cambridge, MA: Harvard University Press, pp. 177–235.)
Newton, I. (1730). Opticks or a Treatise of the Reflections, Refractions, Inflections and Colours of Light (based on the fourth edition, London, 1730), Cohen, Bernard, ed., 1979. New York: Dover Publications.
Nicol, G. D. & Bownds, M. D. (1989). Calcium regulates some, but not all aspects of light adaptation in rod photoreceptors. Journal of General Physiology, 94, 233–259.
Nordby, K., Stabell, B. & Stabell, U. (1984). Dark-adaptation of the human rod system. Vision Research, 24, 841–849.
Parinaud, H. (1881). L'hemeralopie et les fonctions du pourpre visuel. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 93, 286–287.
Parinaud, H. (1884a). Sur la sensibilité visuelle. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 99, 241–242.
Parinaud, H. (1884b). De l'intensité lumineuse des couleurs spectrales; influence de l'adaptation rétinienne. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 99, 937–939.
Parinaud, H. (1885). Sur l'existence de deux espèces de sensibilité à la lumière. Comptes Rendus Hebdomadaires Des Séances De l'Académie des Sciences, 101, 821–823.
Pepe, I. M., Panfoli, I. & Hamm, H. E. (1989). Visual transduction in vertebrate photoreceptors. Cell Biophysics, 14, 129–137.
Pepperberg, D. R. (1984). Rhodopsin and visual adaptation: photoreceptor thresholds in the isolated skate retina. Vision Research, 24, 357–366.
Perutz, M. F. (1989). Mechanisms of cooperativity and allosteric regulation in proteins. Quarterly Reviews of Biophysics, 22 (2), 139–237.
Polden, P. G. & Mollon, J. D. (1980). Reversed effect of adapting stimuli on visual sensitivity. Proceedings of the Royal Society of London, B, 210, 235–272.
Polyak, S. L. (1941/1948). The Retina. Chicago: University of Chicago Press.
Popper, K. R. (1969). Conjectures and Refutations. London: Routledge & Kegan Paul.
Popper, K. R. (1975). The Logic of Scientific Discovery. London: Hutchinson.
Popper, K. R. (1994). Normal science and its dangers. In Criticism and the Growth of Knowledge. Lakatos, Imre & Musgrave, Alan, eds. Cambridge: Cambridge University Press, pp. 51–58.
Pugh, E. N. (1975). Rushton's paradox: rod dark adaptation after flash photolysis. Journal of Physiology, 248, 413–431.
Purkinje, J. (1825). Beobachtungen und Versuche zur Physiologie der Sinne. Neue Beiträge zur Kenntniss des Sehens in subjectiver Hinsicht, Zweiter band. Berlin: Reimer.
Rose, A. (1953). Quantum and noise limitations of the visual process. Journal of the Optical Society of America, 43, 715–716.
Rushton, W. A. H. (1957). Physical measurement of cone pigment in the living human eye. Nature, 179, 571–573.
Rushton, W. A. H. (1961a). Dark-adaptation and the regeneration of rhodopsin. Journal of Physiology, 156, 166–178.
Rushton, W. A. H. (1961b). Rhodopsin measurements and dark-adaptation in a subject deficient in cone vision. Journal of Physiology, 156, 193–205.
Rushton, W. A. H. (1965a). The Ferrier Lecture: visual adaptation. Proceedings of the Royal Society of London, B, 162, 20–46.
Rushton, W. A. H. (1965b). Bleached rhodopsin and visual adaptation. Journal of Physiology, 181, 645–655.
Rushton, W. A. H. (1966). Densitometry of pigments in rods and cones of normal and color defective subjects. Investigative Ophthalmology, 5, 233–241.
Rushton, W. A. H. (1972). Light and dark adaptation. Investigative Ophthalmology, 11, 503–517.
Rushton, W. A. H. & Campbell, F. W. (1954). Measurement of rhodopsin in the living human eye. Nature, 174, 1096–1097.
Rushton, W. A. H., Campbell, F. W., Hagins, W. A. & Brindley, G. S. (1955). The bleaching and regeneration of rhodopsin in the living eye of the albino rabbit and of man. Optica Acta, 1, 183–190.
Rushton, W. A. H., Fulton, A. B. & Baker, H. D. (1969). Dark-adaptation and the rate of pigment regeneration. Vision Research, 9, 1473–1479.
Rushton, W. A. H. & Powell, D. S. (1972a). The early phase of dark adaptation. Vision Research, 12, 1083–1093.
Rushton, W. A. H. & Powell, D. S. (1972b). The rhodopsin content and the visual threshold of human rods. Vision Research, 12, 1073–1081.
Rushton, W. A. H. & Westheimer, G. (1962). The effect upon the rod threshold of bleaching neighbouring rods. Journal of Physiology, 164, 318–329.
Saugstad, P. & Saugstad, A. (1959). The Duplicity Theory: an evaluation. Advances in Ophthalmology, 9, 1–51.
Schjelderup, H. K. (1920). Zur Theorie der Farbenempfindungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. II. Abteilung. Zeitschrift für Sinnesphysiologie, 51 Band, 19–45.
Schneeweis, D. M. & Schnapf, J. L. (1995). Photovoltage of rods and cones in the macaque retina. Science, 268, 1053–1056.
Schultze, M. (1866). Zur Anatomie und Physiologie der Retina. Archiv für mikroskopische Anatomie, Band 2, 175–286..
Sharpe, L. T. (1990). The light-adaptation of the human rod visual system. In Night Vision: Basic, Clinical and Applied Aspects. Hess, R. F., Sharpe, L. T. & Nordby, K., eds. Cambridge: Cambridge University Press, pp. 49–124.
Shlaer, S., Smith, E. L. & Chase, A. M. (1941/1942). Visual acuity and illumination in different spectral regions. Journal of General Physiology, 25, 553–569.
Stabell, B. (1967a). Rods as color receptors in scotopic vision. Scandinavian Journal of Psychology, 8, 132–138.
Stabell, B., Nordby, K. & Stabell, U. (1987). Light-adaptation of the human rod system. Clinical Vision Sciences, 2, 83–91.
Stabell, B. & Stabell, U. (1971a). Facilitation of chromatic cone activity by rod activity. I. Red-related cone activity. Scandinavian Journal of Psychology, 12, 99–105.
Stabell, B. & Stabell, U. (1973a). Chromatic rod vision IX: a theoretical survey. Vision Research, 13, 449–450.
Stabell, B. & Stabell, U. (1974). Chromatic rod-cone interaction. Vision Research, 14, 1389–1392.
Stabell, B. & Stabell, U. (1976). Effects of rod activity on color threshold. Vision Research, 16, 1105–1110.
Stabell, B., Stabell, U. & Nordby, K. (1986b). Dark-adaptation in a rod monochromat: effect of stimulus size, exposure time and retinal eccentricity. Clinical Vision Sciences, 1, 75–80.
Stabell, B. & Stabell, U. (1998). Chromatic rod-cone interaction during dark adaptation. Journal of the Optical Society of America A, 15, 2809–2815.
Stabell, U. (1967b). Rods as color receptors in photopic vision. Scandinavian Journal of Psychology, 8, 139–144.
Stabell, U. & Stabell, B. (1965). Rods as color receptors. Scandinavian Journal of Psychology, 6, 195–200.
Stabell, U. & Stabell, B. (1971b). Facilitation of chromatic cone activity by rod activity. II. Variation of chromatic-related cone activity. Scandinavian Journal of Psychology, 12, 168–174.
Stabell, U. & Stabell, B. (1971c). Chromatic rod vision II: wavelength of pre-stimulation varied. Scandinavian Journal of Psychology, 12, 282–288.
Stabell, U. & Stabell, B. (1973b). Chromatic rod activity at mesopic intensities. Vision Research, 13, 2255–2260.
Stabell, U. & Stabell, B. (1975). Scotopic contrast hues triggered by rod activity. Vision Research, 15, 1115–1118.
Stabell, U. & Stabell, B. (1978). Scotopic hues of simultaneous contrast. Vision Research, 18, 1491–1496.
Stabell, U. & Stabell, B. (1989). Dark-adaptation mechanisms of the long-wave cones. Scandinavian Journal of Psychology, 30, 207–219.
Stabell, U. & Stabell, B. (1994). Mechanisms of chromatic rod vision in scotopic illumination. Vision Research, 34, 1019–1027.
Stabell, U. & Stabell, B. (1996). Long-term rod dark adaptation in man: threshold measurements, rhodopsin regeneration and allosteric sensitivity regulation. An evaluation. Scandinavian Journal of Psychology, 37, 259–268.
Stabell, U., Stabell, B. & Fugelli, A. (1992). Mechanisms of long-term dark adaptation. Scandinavian Journal of Psychology, 33, 12–19.
Stabell, U., Stabell, B., Hisdal, B. & Nordby, K. (1990). Rod and cone dark adaptation. Clinical Vision Sciences, 4, 345–351.
Stabell, U., Stabell, B. & Nordby, K. (1986a). Dark-adaptation of the human rod system: a new hypothesis. Scandinavian Journal of Psychology, 27, 175–183.
Stabell, U., Stabell, B. & Nordby, K. (1989). On the photochemical theory of dark adaptation. In Basic Issues in Psychology. Bjørgen, I. A., ed. London: Sigma, pp. 247–254.
Stiles, W. S. (1939). The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proceedings of the Royal Society of London, B, 127, 64–105.
Stiles, W. S. (1978). Mechanisms of Colour Vision: Selected Papers of W. S. Stiles F. R. S. with a New Introductory Essay. London: Academic Press.
Stiles, W. S. & Crawford, B. A. (1932). Equivalent adaptation levels in localized retinal areas. Report of a joint discussion on vision held on 3 June 1932 at the Imperial College of Science by the Physical and Optical Societies. London: Cambridge University Press.
Stromeyer III, C. F. (1974a). Form-specific colour after effects in scotopic illumination. Nature, 250, 266–268.
Stromeyer III, C. F. (1974b). Rod signals in higher color mechanisms: the McCollough color aftereffect observed in scotopic illumination. In Sensation and Measurement. Moskowitz, H. R., Scharf, B. & Stevens, J. C., eds. Boston: Reidel, pp. 403–410.
Svaetichin, G. (1953). The cone action potential. Acta Physiologica Scandinavica, 106, 565–600.
Tansley, K. (1931). The regeneration of visual purple: its relation to dark adaptation and night blindness. Journal of Physiology, 71, 442–458.
Temme, L. A. & Frumkes, T. E. (1977). Rod-cone interaction in human scotopic vision III: rods influence cone increment thresholds. Vision Research, 17, 681–685.
Trezona, P. W. (1960). The after-effects of a white light stimulus. Journal of Physiology, 150, 67–78.
Trezona, P. W. (1970). Rod participation in the ‘blue’ mechanism and its effect on colour matching. Vision Research, 10, 317–332.
Tschermak, A. (1902). Die Hell-Dunkeladaptation des Auges und die Funktion der Stäbchen und Zapfen. In Ergebnisse der Physiologie. Asher, L. & Spiro, K., eds. Jahrgang, Erster, II. Abteilung, Bergmann: Wiesbaden, Biophysik und Psychophysik, pp. 695–800.
Tschermak, A. (1929). Theorie des Farbensehens. In Handbuch der Normalen und Pathologischen Physiologie. Bethe, A., Bergmann, G., Embden, G. & Ellinger, A., eds. Band 12 (1), Berlin: Springer, pp. 550–584.
Volbrecht, V. J., Nerger, J. L., Imhoff, S. M. & Ayde, C. J. (2000). Effect of the short-wavelength-sensitive-cone mosaic and rods on the locus of unique green. Journal of the Optical Society of America A, 17, 628–634.
Wald, G. (1933). Vitamin A in the retina. Nature, 132, 316–317.
Wald, G. (1934). Carotenoids and the vitamin A cycle in vision. Nature, 134, 65.
Wald, G. (1934/1935). Vitamin A in eye tissues. Journal of General Physiology, 18, 905–915.
Wald, G. (1935/1936). Carotenoids and the visual cycle. Journal of General Physiology, 19, 351–371.
Wald, G. (1937a). Visual purple system in fresh-water fishes. Nature, 139, 1017–1018.
Wald, G. (1937b). Photo-labile pigments of the chicken retina. Nature, 140, 545–546.
Wald, G. (1937/1938). Area and visual threshold. Journal of General Physiology, 21, 269–287.
Wald, G. (1938/1939). The porphyropsin visual system. Journal of General Physiology, 22, 775–794.
Wald, G. (1949a). The photochemistry of vision. Documenta Ophthalmologica, 3, 94–137.
Wald, G. (1949b). The enzymatic reduction of the retinenes to the vitamin A. Science, 109, 482–483.
Wald, G. (1954). On the mechanism of the visual threshold and visual adaptation. Science, 119, 887–892.
Wald, G. (1958). The Selig Hecht Commemorative Lecture. Retinal chemistry and the physiology of vision. In Visual Problems of Colour. London: Her Majesty's Stationery Office, National Physical Laboratory Symposium No. 8, Vol. 1, pp. 7–61.
Wald, G. (1964). The receptors of human color vision. Science, 145, 1007–1017.
Wald, G. (1967). Blue-blindness in the normal fovea. Journal of the Optical Society of America, 57, 1289–1301.
Wald, G. (1968). Molecular basis of visual excitation. Science, 162, 230–239.
Walters, H. V. & Wright, W. D. (1943). The spectral sensitivity of the fovea and extrafovea in the Purkinje range. Proceedings of the Royal Society of London, B, 131, 340–361.
Weale, R. A. (1957). Trichromatic ideas in the seventeenth and eighteenth centuries. Nature, 179, 648–651.
Westheimer, G. (1965). Spatial interaction in the human retina during scotopic vision. Journal of Physiology, 181, 881–894.
Westheimer, G. (1968). Bleached rhodopsin and retinal interaction. Journal of Physiology, 195, 97–105.
Westheimer, G. (1970). Rod-cone independence for sensitizing interaction in the human retina. Journal of Physiology, 206, 109–116.
Wiesel, T. N. & Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29, 1115–1156.
Willmer, E. N. (1946). Retinal Structure and Colour Vision. Cambridge: Cambridge University Press.
Willmer, E. N. (1950). Low threshold rods and the perception of blue. Journal of Physiology, 11, 17P.
Willmer, E. N. (1961). Human colour vision and the perception of blue. Journal of Theoretical Biology, 2, 141–179.
Wright, W. D. (1946). Researches on Normal and Defective Colour Vision. London: Henry Kimpton,.
Wässle, H., Grünert, U., Chun, M-H. & Boycott, B. B. (1995). The rod-pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. The Journal of Comparative Neurology, 361, 537–551.
Yeh, T., Lee, B. B. & Kremers, J. (1996). The time course of adaptation in macaque retinal ganglion cells. Vision Research, 36, 913–931.
Yin, L., Smith, R. G., Sterling, P. & Brainard, D. H. (2006). Chromatic properties of horizontal and ganglion cell responses follow a dual gradient in cone opsin expression. Journal of Neuroscience, 26 (47), 12351–12361.
Young, T. (1802a). The Bakerian Lecture. On the theory of light and colours. Philosophical Transactions of the Royal Society of London, 92, 12–48.
Young, T. (1802b). An account of some cases of the production of colours, not hitherto described. Philosophical Transactions of the Royal Society of London, 92, 387–397.
Young, T. (1807). Lecture 37: on physical optics. A Course of Lectures on Natural Philosophy and the Mechanical Arts, Vol. I. London: William Savage Bedford Bury, pp. 434–446.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.