Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-14T03:18:45.084Z Has data issue: false hasContentIssue false

8 - The duplicity theory of R. Granit

Published online by Cambridge University Press:  22 January 2010

Bjørn Stabell
Affiliation:
Universitetet i Oslo
Ulf Stabell
Affiliation:
Universitetet i Oslo
Get access

Summary

The spikes recorded by Hartline and Kuffler with the microelectrode technique represented end products in a series of consecutive events in the retina, starting with absorption of photons. To gain information about these extremely complex events that preceded the discharges of the optic nerve fibres, the research workers had to rely on the measurements of the electroretinogram (ERG). Indeed, it was generally held that mechanisms underlying the ERG response directly determined the impulse pattern of the optic nerve.

The ERG technique was first employed in 1865 by Frithiof Holmgren, a Swedish physiologist. He applied a pair of electrodes to an eye and found that the galvanometer connected to the electrodes gave a marked deflection both when the eye was illuminated and when the light was turned off. (For a description of the development of this technique, see introduction section of Granit, 1963.)

SUPPORTING EVIDENCE FOR THE DUPLICITY THEORY FROM THE ERG TECHNIQUE

A very extensive review of the research literature on ERG was made by Granit (1947). Presuming that the ERG response represented an average reaction, reflecting the processes of activated photoreceptors, the evidence reviewed was found to support the duplicity theory, suggesting that there were two quite different ERG response patterns of the retina, the so-called E- and I-ERG responses – the former characteristic of rod-dominant and the latter of cone-dominant retinas.

Type
Chapter
Information
Duplicity Theory of Vision
From Newton to the Present
, pp. 78 - 85
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×