Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T17:15:41.841Z Has data issue: false hasContentIssue false

15 - How body size mediates the role of animals in nutrient cycling in aquatic ecosystems

Published online by Cambridge University Press:  02 December 2009

Robert O. Hall Jr
Affiliation:
University of Wyoming USA
Benjamin J. Koch
Affiliation:
University of Wyoming USA
Michael C. Marshall
Affiliation:
University of Wyoming USA
Brad W. Taylor
Affiliation:
University of Wyoming USA
Lusha M. Tronstad
Affiliation:
University of Wyoming USA
Alan G. Hildrew
Affiliation:
Queen Mary University of London
David G. Raffaelli
Affiliation:
University of York
Ronni Edmonds-Brown
Affiliation:
University of Hertfordshire
Get access

Summary

Introduction

Aquatic ecosystems have been fertile ground for understanding the extent to which animals can alter nutrient cycling. Although animals have been included in ecosystem models for years (for example, Teal, 1962), it is only more recently that investigators have looked at animals, either as individuals, single species, or assemblages, as agents regulating nutrient cycling (Kitchell et al., 1979; Meyer, Schultz & Helfman, 1983; Grimm, 1988; Jones & Lawton, 1995). A recent review details how animals can affect nutrient cycling in freshwater ecosystems (Vanni, 2002), but the next step is to understand the controls on which animals are important regulators of nutrient dynamics in ecosystems. One controlling factor is determined by attributes of the animals themselves, such as their body size.

Animals can regulate nutrient cycling directly or indirectly (Kitchell et al., 1979; Vanni, 2002). Direct regulation is the transformation and transportation of nutrients by animal ingestion, egestion, production and excretion. For example, animal excretion can constitute the largest source of plant-available nitrogen (N) within an ecosystem (Hall, Tank & Dybdahl, 2003) and animals can move nutrients between habitats (Meyer et al., 1983). Perhaps more common are indirect controls, whereby animals alter nutrient cycling by changing the biomass, production or distribution of the plants or microbes that take up nutrients. For example, predatory fish can regulate phosphorus (P) dynamics or nitrogen retention via a trophic cascade (Elser et al., 1998; Simon et al., 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alimov, A. F. (2003). Territoriality in aquatic animals and their sizes. Biology Bulletin, 30, 79–86.CrossRefGoogle Scholar
Allan, J. D. (2001). Stream Ecology: Structure and Function of Running Waters, Boston: Kluwer Academic Publishers.Google Scholar
Allan, J. D., Abell, R., Hogan, Z., Revenga, C., Taylor, B. W., Welcomme, R. L. & Winemiller, K. (2005). Overfishing of inland waters. Bioscience, 55, 1041–1051.CrossRefGoogle Scholar
Andre, E. R., Hecky, R. E. & Duthie, H. C. (2003). Nitrogen and phosphorus regeneration by cichlids in the littoral zone of Lake Malawi, Africa. Journal of Great Lakes Research, 29, 190–201.CrossRefGoogle Scholar
Arendt, J. D. & Wilson, D. S. (2000). Population differences in the onset of cranial ossification in pumpkinseed (Lepomis gibbosus), a potential cost of rapid growth. Canadian Journal of Fisheries and Aquatic Sciences, 57, 351–356.CrossRefGoogle Scholar
Baca, R. M. & Threlkeld, S. T. (2000). Using size distributions to detect nutrient and sediment effects within and between habitats. Hydrobiologia, 435, 197–211.CrossRefGoogle Scholar
Barry, M. J. (1994). The costs of crest induction for Daphnia carinata. Oecologia, 97, 278–288.CrossRefGoogle ScholarPubMed
Bartell, S. M. (1981). Potential impact of size-selective planktivory on phosphorus release by zooplankton. Hydrobiologia, 80, 139–145.CrossRefGoogle Scholar
Ben-David, M., Blundell, G. M., Kern, J. W.et al. (2005). Communication in river otters: creation of variable resource shed for terrestrial communities. Ecology, 86, 1331–1345.CrossRefGoogle Scholar
Benke, A. C., Huryn, A. D., Smock, L. A. & Wallace, J. B. (1999). Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society, 18, 308–343.CrossRefGoogle Scholar
Blumenshine, S. C., Lodge, D. M. & Hodgson, J. R. (2000). Gradient of fish predation alters body size distributions of lake benthos. Ecology, 81, 374–386.Google Scholar
Boers, P., Vanballegooijen, L. & Uunk, J. (1991). Changes in phosphorus cycling in a shallow lake due to food web manipulations. Freshwater Biology, 25, 9–20.CrossRefGoogle Scholar
Bohonak, A. J. & van der Linde, K. (2004). RMA: Software for reduced major axis regression, Java version. http://www.kimvdlinde.com/professional/rma.html.
Bourassa, N. & Morin, A. (1995). Relationships between size structure of invertebrate assemblages and trophy and substrate composition in streams. Journal of the North American Benthological Society, 14, 393–403.CrossRefGoogle Scholar
Brooks, J. L. & Dodson, S. I. (1965). Predation, body size, and composition of plankton. Science, 150, 28–35.CrossRefGoogle ScholarPubMed
Brown, J. H. (1995). Macroecology. Chicago: University of Chicago Press.Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.CrossRefGoogle Scholar
Carpenter, S. R., Kraft, C. E., Wright, R.et al. (1992). Resilience and resistance of a lake phosphorus cycle before and after food web manipulation. American Naturalist, 140, 781–798.CrossRefGoogle ScholarPubMed
Cattaneo, A. (1993). Size spectra of benthic communities in Laurentian streams. Canadian Journal of Fisheries and Aquatic Sciences, 50, 2659–2666.CrossRefGoogle Scholar
Conroy, J. D., Edwards, W. J., Pontius, R. A.et al. (2005). Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshwater Biology, 50, 1146–1162.CrossRefGoogle Scholar
Crowl, T. A. & Covich, A. P. (1990). Predator-induced life-history shifts in a fresh-water snail. Science, 247, 949–951.CrossRefGoogle Scholar
Cyr, H. & Pace, M. L. (1993). Allometric theory: extrapolations from individuals to communities. Ecology, 74, 1234–1245.CrossRefGoogle Scholar
Dahl, J. & Peckarsky, B. L. (2002). Induced morphological defenses in the wild: predator effects on a mayfly, Drunella coloradensis. Ecology, 83, 1620–1634.CrossRefGoogle Scholar
Dodson, S. I. (1974). Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology, 55, 605–613.CrossRefGoogle Scholar
Elser, J. J. & Urabe, J. (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observation and consequences. Ecology, 80, 735–751.CrossRefGoogle Scholar
Elser, J. J., Elser, M. M., McKay, N. A. & Carpenter, S. R. (1988). Zooplankton mediated transitions between N and P limited algal growth. Limnology and Oceanography, 33, 1–14.CrossRefGoogle Scholar
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. & Schampel, J. H. (1996). Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. Bioscience, 46, 674–684.CrossRefGoogle Scholar
Elser, J. J., Chrzanowski, T. H., Sterner, R. W. & Mills, K. H. (1998). Stoichiometric constraints on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems, 1, 120–136.CrossRefGoogle Scholar
Feller, R. J. & Warwick, R. M. (1988). Energetics. In Introduction to the Study of Meiofauna, ed. Higgins, R. P. and Thiel, H.. Washington, DC: Smithsonian Institution Press, pp. 181–196.Google Scholar
Fukuhara, H. & Yasuda, K. (1989). Ammonium excretion by some freshwater zoobenthos from a eutrophic lake. Hydrobiologia, 173, 1–8.CrossRefGoogle Scholar
Gaedke, U. (1992). The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology and Oceanography, 37, 1202–1220.CrossRefGoogle Scholar
Gardner, W. S. & Scavia, D. (1981). Kinetic examination of nitrogen release by zooplankters. Limnology and Oceanography 26, 801–810.CrossRefGoogle Scholar
Gende, S. M., Edwards, R. T., Willson, M. F. & Wipfli, M. S. (2002). Pacific salmon in aquatic and terrestrial ecosystems. Bioscience, 52, 917–928.CrossRefGoogle Scholar
Gido, K. B. (2002). Interspecific comparisons and the potential importance of nutrient excretion by benthic fishes in a large reservoir. Transactions of the American Fisheries Society, 131, 260–270.2.0.CO;2>CrossRefGoogle Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.CrossRefGoogle ScholarPubMed
Grimm, N. B. (1988). Role of macroinvertebrates in nitrogen dynamics of a desert stream. Ecology, 69, 1884–1893.CrossRefGoogle Scholar
Hall, R. O., Tank, J. L. & Dybdahl, M. F. (2003). Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment, 1, 407–411.CrossRefGoogle Scholar
Hanson, J. M., Prepas, E. E. & Mackay, W. C. (1989). Size distribution of macroinvertebrate community in a freshwater lake. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1510–1519.CrossRefGoogle Scholar
Henry, R. L. (1985). The impact of zooplankton size structure on phosphorus cycling in field enclosures. Hydrobiologia, 120, 3–9.CrossRefGoogle Scholar
Hjerne, O. & Hansson, S. (2002). The role of fish and fisheries in Baltic Sea nutrient dynamics. Limnology and Oceanography, 47, 1023–1032.CrossRefGoogle Scholar
Horppila, J. (1998). Effects of mass removal and variable recruitment on nutrient excretion by a planktivorous roach stock. Journal of Fish Biology, 52, 951–961.CrossRefGoogle Scholar
Huxley, J. S. (1932). Problems of Relative Growth, London: Methuen.Google Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H.et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.CrossRefGoogle ScholarPubMed
Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. (2004). The scaling of animal space use. Science, 306, 266–268.CrossRefGoogle ScholarPubMed
Jones, C. G. & Lawton, J. H. (1995). Linking Species and Ecosystems. New York: Chapman & Hall.CrossRefGoogle Scholar
Kitchell, J. F., O'Neil, R. V., Webb, D.et al. (1979). Consumer regulation of nutrient cycling. Bioscience, 29, 28–34.CrossRefGoogle Scholar
Koch, B. J. (2005). Invertebrate-mediated nitrogen cycling in three connected aquatic ecosystems, M. S. thesis, Laramie: University of Wyoming, p. 54.
Kraft, C. E. (1993). Phosphorus regeneration by Lake Michigan Alewives in the mid-1970s. Transactions of the American Fisheries Society, 122, 749–755.2.3.CO;2>CrossRefGoogle Scholar
Li, K. T., Wetterer, J. K. & Hairston, N. G. (1985). Fish size, visual resolution, and prey selectivity. Ecology, 66, 1729–1735.CrossRefGoogle Scholar
Lively, C. M. (1986). Competition, comparative life histories, and maintenance of shell dimorphism in a barnacle. Ecology, 67, 858–864.CrossRefGoogle Scholar
Mercier, V., Vis, C., Morin, A. & Hudon, C. (1999). Patterns in invertebrate and periphyton size distributions from navigation buoys in the St. Lawrence River. Hydrobiologia, 394, 83–91.CrossRefGoogle Scholar
Meyer, J. L., Schultz, E. T. & Helfman, G. S. (1983). Fish schools: an asset to corals. Science, 220, 1047–1049.CrossRefGoogle ScholarPubMed
Morin, A. & Nadon, D. (1991). Size distribution of epilithic lotic invertebrates and implications for community metabolism. Journal of the North American Benthological Society, 10, 300–308.CrossRefGoogle Scholar
Myers, R. & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423, 280–283.CrossRefGoogle ScholarPubMed
Nachtigall, W. (1977). Swimming mechanics and energetics of locomotion in variously sized water beetles-Dytiscidae, body length 2 to 35 mm. In Scale Effects in Animal Locomotion, ed. Pedley, T. J.. London: Academic Press, pp. 269–283.Google Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Jr. (1998). Fishing down marine food webs. Science, 279, 860–863.CrossRefGoogle ScholarPubMed
Peckarsky, B. L., McIntosh, A. R., Taylor, B. W. & Dahl, J. (2002). Predator chemicals induce changes in mayfly life history traits: a whole-stream manipulation. Ecology, 83, 612–618.CrossRefGoogle Scholar
Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Quinn, T. P. & Kinnison, M. T. (1999). Size-selective and sex-selective predation by brown bears on sockeye salmon. Oecologia, 121, 273–282.CrossRefGoogle ScholarPubMed
Ramcharan, C. W., France, R. L. & McQueen, D. J. (1996). Multiple effects of planktivorous fish on algae through a pelagic trophic cascade. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2819–2828.CrossRefGoogle Scholar
Ramsay, P. M., Rundle, S. D., Attrill, M. J.et al. (1997). A rapid method for estimating biomass size spectra of benthic metazoan communities. Canadian Journal of Fisheries and Aquatic Sciences, 54, 1716–1724.CrossRefGoogle Scholar
Rasmussen, J. B. (1993). Patterns in the size structure of littoral zone macroinvertebrate communities. Canadian Journal of Fisheries and Aquatic Sciences, 50, 2192–2207.CrossRefGoogle Scholar
Reinertsen, H. A., Jensen, A., Langeland, A. & Olsen, Y. (1986). Algal competition for phosphorus: the influence of zooplankton and fish. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1135–1141.CrossRefGoogle Scholar
Robson, B. J., Barmuta, L. A. & Fairweather, P. G. (2005). Methodological and conceptual issues in the search for relationship between animal body-size distributions and benthic habitat architecture. Marine and Freshwater Research, 56, 1–11.CrossRefGoogle Scholar
Roy, K., Collins, A. G., Becker, B. J., Begovic, E. & Engle, J. M. (2003). Anthropogenic impacts and historical decline in body size of rocky intertidal gastropods in southern California. Ecology Letters, 6, 205–211.CrossRefGoogle Scholar
Schaus, M. H., Vanni, M. J., Wissing, T. E.et al. (1997). Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography, 42, 1386–1397.CrossRefGoogle Scholar
Schindler, D. E. & Eby, L. A. (1997). Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology, 78, 1816–1831.CrossRefGoogle Scholar
Schmid, P. E., Tokeshi, M. & Schmid-Araya, J. M. (2002). Scaling in stream communities. Proceedings of the Royal Society of London B, 269, 2587–2594.CrossRefGoogle ScholarPubMed
Simon, K. S., Townsend, C. R., Biggs, B. J. F., Bowden, W. B. & Frew, R. D. (2004). Habitat-specific nitrogen dynamics in New Zealand streams containing native and invasive fish. Ecosystems, 7, 777–792.CrossRefGoogle Scholar
Stead, T. K., Schmid-Araya, J. M., Schmid, P. E. & Hildrew, A. G. (2005). The distribution of body size in a stream community: one system, many patterns. Journal of Animal Ecology, 74, 475–487.CrossRefGoogle Scholar
Sterner, R. W. (1990). The ratio of nitrogen to phosphorus resupplied by herbivores – zooplankton and the algal competitive arena. American Naturalist, 136, 209–229.CrossRefGoogle Scholar
Sterner, R. W. & Elser, J. J. (2002). Ecological Stoichiometry. Princeton: Princeton University Press.Google Scholar
Stibor, H. (1992). Predator induced life-history shifts in a fresh-water cladoceran. Oecologia, 92, 162–165.CrossRefGoogle Scholar
Tarvainen, M., Sarvala, J. & Helminen, H. (2002). The role of phosphorus release by roach Rutilus rutilus (L.) in the water quality changes of a biomanipulated lake. Freshwater Biology, 47, 2325–2336.CrossRefGoogle Scholar
Teal, J. M. (1962). Energy flow in the salt marsh ecosystem of Georgia. Ecology, 43, 614–649.CrossRefGoogle Scholar
Thomas, S. A., Royer, T. V., Minshall, G. W. & Snyder, E. (2003). Assessing the role of marine derived nutrients in Idaho streams. In Nutrients in Salmonid Ecosystems: Sustaining Productivity and Biodiversity, ed. Stockner, J. G.. Bethesda, Maryland: American Fisheries Society, pp. 41–55.Google Scholar
Tollrian, R. (1995). Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology, 76, 1691–1705.CrossRefGoogle Scholar
Trippel, E. A. (1995). Age at maturity as a stress indicator in fisheries. Bioscience, 45, 759–771.CrossRefGoogle Scholar
Vadeboncoeur, Y., Vander Zanden, M. J. & Lodge, D. M. (2002). Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience, 52, 44–54.CrossRefGoogle Scholar
Vanni, M. J. (1987). Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology, 68, 624–635.CrossRefGoogle Scholar
Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.CrossRefGoogle Scholar
Vanni, M. J. & Findlay, D. L. (1990). Trophic cascades and phytoplankton community structure. Ecology, 71, 921–937.CrossRefGoogle Scholar
Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. (2002). Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species idenitity and ecosystem processes. Ecology Letters, 5, 285–293.CrossRefGoogle Scholar
Ward, P. & Myers, R. A. (2005). Shifts in open-ocean fish communities coinciding with the commencement of commercial fishing. Ecology, 86, 835–847.CrossRefGoogle Scholar
Weihs, D. (1977). Effects of size on sustained swimming speeds of aquatic organisms. In Scale Effects in Animal Locomotion, ed. Pedley, T. J.. London: Academic Press, pp. 299–313.Google Scholar
Welcomme, R. L. (1999). A review of a model for qualitative evaluation of exploitation levels in multi-species fisheries. Fisheries Management and Ecology, 6, 1–19.CrossRefGoogle Scholar
Wen, Y. H. & Peters, R. H. (1994). Empirical models of phosphorus and nitrogen-excretion rates by zooplankton. Limnology and Oceanography, 39, 1669–1679.CrossRefGoogle Scholar
Winemiller, K. & Jepsen, D. B. (2004). Migratory neotropical fish subsidize food webs of oligotrophic blackwater rivers. In Food Webs at the Landscape Level, ed. Polis, G. A., Power, M. E. and Huxel, G. R.. Chicago: University of Chicago Press, pp. 115–132.Google Scholar
Wootton, J. T. (1994). Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology, 75, 151–165.CrossRefGoogle Scholar
Zhuang, S. (2005). The influence of body size and water temperature on metabolism and energy budget in Laternula marilina Reeve. Aquaculture Research, 36, 768–775.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×