Skip to main content
×
Home
Body Size: The Structure and Function of Aquatic Ecosystems
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 23
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Giacomini, Henrique C. Shuter, Brian J. and Baum, Julia K. 2016. Size-based approaches to aquatic ecosystems and fisheries science: a symposium in honour of Rob Peters. Canadian Journal of Fisheries and Aquatic Sciences, Vol. 73, Issue. 4, p. 471.


    Lehtonen, Topi K. Wong, Bob B. M. and Kvarnemo, Charlotta 2016. Effects of salinity on nest-building behaviour in a marine fish. BMC Ecology, Vol. 16, Issue. 1,


    Raffaelli, Dave Hardiman, Alice Smart, Jim Yamanaka, Tsuyuko and White, Piran C. L. 2016. The textural discontinuity hypothesis: an exploration at a regional level. Shortened version: exploring Holling's TDH. Oikos, Vol. 125, Issue. 6, p. 797.


    Yin, Xu-Wang Tan, Bing-Bing Zhou, Yan-Chun Li, Xiao-Chun and Liu, Wei 2016. Development time of male and female rotifers with sexual size dimorphism. Hydrobiologia, Vol. 767, Issue. 1, p. 27.


    Cross, Wyatt F. Hood, James M. Benstead, Jonathan P. Huryn, Alexander D. and Nelson, Daniel 2015. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, Vol. 21, Issue. 3, p. 1025.


    García, Liliana and Pardo, Isabel 2015. Food type and temperature constraints on the fitness of a dominant freshwater shredder. Annales de Limnologie - International Journal of Limnology, Vol. 51, Issue. 3, p. 227.


    Nakazawa, Takefumi 2015. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Population Ecology, Vol. 57, Issue. 2, p. 347.


    Yagi, M. Yamada, M. Shimoda, M. Uchida, J. Kinoshita, T. Shimizu, K. Yamawaki, N. Aoshima, T. Morii, Y. and Kanehara, H. 2015. Length-weight relationships of 22 fish species from the East China Sea. Journal of Applied Ichthyology, Vol. 31, Issue. 1, p. 252.


    Alonso-Fernández, A Otero, J Villegas-Ríos, D and Bañón, R 2014. Drivers of body size changes in a Pollachius pollachius stock in NE Atlantic coastal waters. Marine Ecology Progress Series, Vol. 511, p. 223.


    Canavero, Andrés Hernández, Daniel Zarucki, Matías and Arim, Matías 2014. Patterns of co-occurrences in a killifish metacommunity are more related with body size than with species identity. Austral Ecology, Vol. 39, Issue. 4, p. 455.


    Kooijman, Sebastiaan A. L. M. and Lika, Konstadia 2014. Resource allocation to reproduction in animals. Biological Reviews, Vol. 89, Issue. 4, p. 849.


    Krenek, Lauren Rudolf, Volker H. W. and Johansson, Frank 2014. Allometric scaling of indirect effects: body size ratios predict non-consumptive effects in multi-predator systems. Journal of Animal Ecology, Vol. 83, Issue. 6, p. 1461.


    Orlofske, Jessica M. and Baird, Donald J. 2014. Incorporating continuous trait variation into biomonitoring assessments by measuring and assigning trait values to individuals or taxa. Freshwater Biology, Vol. 59, Issue. 3, p. 477.


    Worischka, Susanne Hellmann, Claudia Berendonk, Thomas U. and Winkelmann, Carola 2014. Fish predation can induce mesohabitat-specific differences in food web structures in small stream ecosystems. Aquatic Ecology, Vol. 48, Issue. 4, p. 367.


    Klecka, Jan Boukal, David S. and Rasmussen, Joseph 2013. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study. Journal of Animal Ecology, Vol. 82, Issue. 5, p. 1031.


    Verberk, Wilco C. E. P. Atkinson, David and Konarzewsk, Marek 2013. Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms. Functional Ecology, Vol. 27, Issue. 6, p. 1275.


    CUCHEROUSSET, J. BOULETREAU, S. MARTINO, A. ROUSSEL, J.-M. and SANTOUL, F. 2012. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fisheries Management and Ecology, Vol. 19, Issue. 2, p. 111.


    Sebastian, Patrizia Stibor, Herwig Berger, Stella and Diehl, Sebastian 2012. Effects of water temperature and mixed layer depth on zooplankton body size. Marine Biology, Vol. 159, Issue. 11, p. 2431.


    Tyler, Elizabeth H. M. Somerfield, Paul J. Berghe, Edward Vanden Bremner, Julie Jackson, Emma Langmead, Olivia Palomares, Maria Lourdes D. and Webb, Thomas J. 2012. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Global Ecology and Biogeography, Vol. 21, Issue. 9, p. 922.


    Yamanaka, Tsuyuko White, Piran C. L. Spencer, Matthew and Raffaelli, Dave 2012. Patterns and processes in abundance-body size relationships for marine benthic invertebrates. Journal of Animal Ecology, Vol. 81, Issue. 2, p. 463.


    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Body Size: The Structure and Function of Aquatic Ecosystems
    • Online ISBN: 9780511611223
    • Book DOI: https://doi.org/10.1017/CBO9780511611223
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

Ecologists have long struggled to predict features of ecological systems, such as the numbers and diversity of organisms. The wide range of body sizes in ecological communities, from tiny microbes to large animals and plants, is emerging as the key to prediction. Based on the relationship between body size and features such as biological rates, the physics of water and the amount of habitat available, we may be able to understand patterns of abundance and diversity, biogeography, interactions in food webs and the impact of fishing, adding up to a potential 'periodic table' for ecology. Remarkable progress on the unravelling, describing and modelling of aquatic food webs, revealing the fundamental role of body size, makes a book emphasising marine and freshwater ecosystems particularly apt. In this 2007 book, the importance of body size is examined at a range of scales that will be of interest to professional ecologists, from students to senior researchers.

Reviews

'I can recommend this book to a wide audience. Not only students but experienced researchers also will find many stimulating chapters and a comprehensive list of the literature related to body size at the end of each chapter. The latter turns this book into an invaluable literature resource. …readers of this book will gain motivation to explore the importance and the limitations of body-size-related approaches to ecology in further studies.'

Source: Basic and Applied Ecology

'The metabolic theory of ecology (MTE) is a promising, upcoming conceptual framework which should be followed attentively in its future development and applications … this book will be interesting for anyone working with large databases and on the look for new applications and tests. Also, biology students wishing to be briefed on the state of the art of ecological analysis, will find this volume quite inspiring.'

Source: Zentralblatt für Geologie und Paläontologie

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.


J. H. Ryther (1969). Photosynthesis and fish production in the sea. Science, 166, 72–76.

A. P. Allen , J. F. Gillooly & J. H. Brown (2005). Linking the global carbon cycle to individual metabolism. Functional Ecology, 19, 202–213.

A. Belgrano , A. P. Allen , B. J. Enquist & J. F. Gillooly (2002). Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecology Letters, 5, 611–613.

S. R. Carpenter & J. F. Kitchell (1988). Consumer control of lake productivity. Bioscience, 38, 764–769.

H. Cyr & R. H. Peters (1996). Biomass-size spectra and the prediction of fish biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 53, 994–1006.

J. J. Elser , D. R. Dobberfuhl , N. A. MacKay & J. H. Schampel (1996). Organism size, life history, and N:P stoichiometry. Bioscience, 46, 674–684.

J. J. Elser , R. W. Sterner , E. Gorokhova et al. (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540–550.

S. K. M. Ernest , B. J. Enquist , J. H. Brown et al. (2003). Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 6, 990–995.

T. Fenchel & B. J. Finlay (1983). Respiration rates in heterotrophic, free-living protozoa. Microbial Ecology, 9, 99–122.

G. F. Gause (1934). The Struggle for Existence. Baltimore: Williams and Wilkins.

J. F. Gillooly , A. P. Allen , J. H. Brown et al. (2005a). The metabolic basis of whole-organism RNA and phosphorus content. Proceedings of the National Academy of Sciences, 102, 11923–11927.

J. F. Gillooly , A. P. Allen , G. B. West & J. H. Brown (2005b). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences, 102, 140–145.

M. A. Leibold & H. M. Wilbur (1992). Interactions between food web structure and nutrients on pond organisms. Nature, 360, 341–343.

W. K. W. Li (2002). Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature, 419, 154–157.

R. L. Lindeman (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–417.

P. J. Morin (1995). Functional redundancy, nonadditive interactions, and supply-side dynamics in experimental pond communities. Ecology, 76, 133–149.

P. J. Morin (1999). Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology, 80, 752–760.

H. T. Odum (1956). Efficiencies, size of organisms, and community structure. Ecology, 37, 592–597.

R. T. Paine (1974). Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia, 15, 93–120.

D. W. Schindler (1974). Eutrophication and recovery in experimental lakes: implications for lake management. Science, 184, 897–899.

R. W. Sheldon & T. R. Parsons (1967). A continuous size spectrum for particulate matter in sea. Journal of the Fisheries Research Board of Canada, 24, 909–915.

W. G. Sprules & J. E Bowerman . (1988). Omnivory and food chain length in zooplankton food webs. Ecology, 69, 418–426.

D. W. Thompson (1917). On Growth and Form. Cambridge: Cambridge University Press.

P. Yodzis & S. Innes (1992). Body size and consumer-resource dynamics. American Naturalist, 139, 1151–1175.

A. Abelson & M. Denny (1997). Settlement of marine organisms in flow. Annual Review of Ecology and Systematics, 28, 317–339.

A. Abelson , T. Miloh & Y. Loya (1993). Flow patterns induced by substrata and body morphologies of benthic organisms, and their role in determining availability of food particles. Limnology and Oceanography, 38, 1116–1124.

J. L. Acuña (2001). Pelagic tunicates: why gelatinous? American Naturalist, 158, 100–107.

J. R. Allen (1998). Suspension feeding in the brittle-star Ophiothrix fragilis: efficiency of particle retention and implications for the use of encounter-rate models. Marine Biology, 132, 383–390.

K. R. N. Anthony (1997). Prey capture by the sea anemone Metridium senile (L.): effects of body size, flow regime, and upstream neighbors. Biological Bulletin, 192, 73–86.

S. A. Brown , G. D. Ruxton , R. W. Pickup & S. Humphries (2005). Seston capture by Hydropsyche siltalai and the accuracy of capture efficiency estimates. Freshwater Biology, 50, 113–126.

B. J. Cardinale , M. A. Palmer & S. L. Collins (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 415, 426–428.

M. M. Chance & D. A. Craig (1986). Hydrodynamics and behaviour of Simuliidae larvae (Diptera). Canadian Journal of Zoology, 64, 1295–1309.

A. Y. Cheer & M. A. R. Koehl (1987). Paddles and rakes: fluid flow through bristled appendages of small organisms. Journal of Theoretical Biology, 129, 17–39.

D. Dudgeon (1987). A laboratory study of optimal behaviour and the costs of net construction by Polycentropus flavomaculatus (Insecta: Trichoptera: Polycentropodidae). Journal of Zoology, London, 211, 121–141.

J. E. Eckman (1990). A model of passive settlement by planktonic larvae onto bottoms of differing roughness. Limnology and Oceanography, 35, 887–901.

M. Friedrichs , G. Graf & B. Springer (2000). Skimming flow over a simulated polychaete tube lawn at low population densities. Marine Ecology Progress Series, 192, 219–228.

J. M. Gili & R. Coma (1998). Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology and Evolution, 13, 316–321.

J. Grant , C. W. Emerson & S. E. Shumway (1993). Orientation, passive transport, and sediment erosion features of the sea scallop Placopecten magellanicus in the benthic boundary layer. Canadian Journal of Zoology, 71, 953–959.

B. T. Hentschel (1996). Ontogenetic changes in particle-size selection by deposit-feeding spionid polychaetes: the influence of palp size on particle contact. Journal of Experimental Marine Biology and Ecology, 206, 1–24.

A. S. Johnson (1990). Flow around phoronids: consequences of a neighbor to suspension feeders. Limnology and Oceanography, 35, 1395–1401.

A. S. Johnson (1993). Sag-mediated modulated tension in terebellid tentacles exposed to flow. Biological Bulletin, 185, 10–19.

K. Kim & H. R. Lasker (1998). Allometry of resource capture in colonial cnidarians and constraints on modular growth. Functional Ecology, 12, 646–654.

M. A. R. Koehl (1983). The morphology and performance of suspension-feeding appendages. Journal of Theoretical Biology, 105, 1–11.

M. A. R. Koehl (1993). Hairy little legs: feeding, smelling, and swimming at low Reynolds numbers. Contemporary Mathematics, 141, 33–64.

M. A. R. Koehl (1996). When does morphology matter? Annual Review of Ecology and Systematics, 27, 501–542.

M. A. R. Koehl (2001). Transitions in function at low Reynolds number: hair-bearing animal appendages. Mathematical Methods in the Applied Sciences, 24, 1523–1532.

M. LaBarbera (1984). Feeding currents and particle capture mechanisms in suspension feeding animals. American Zoologist, 24, 71–84.

M. Lindegarth , P. R. Jonsson & C. André (2002). Physical and numerical modeling of the role of hydrodynamic processes on adult-larval interactions of a suspension-feeding bivalve. Journal of Marine Research, 60, 499–516.

L.-O. Loo , P. R. Jonsson , M. Sköld & Ö Karlsson . (1996). Passive suspension feeding in Amphiura filiformis (Echinodermata: Ophiuroidea): feeding behaviour in flume flow and potential feeding rate of field populations. Marine Ecology Progress Series, 139, 143–155.

W. Nachtigall (2001). Some aspects of Reynolds number effects in animals. Mathematical Methods in the Applied Sciences, 24, 1401–1408.

A. R. M. Nowell & M. Church (1979). Turbulent flow in a depth-limited boundary layer. Journal of Geophysical Research, 84, 4816–4824.

A. R. M. Nowell & P. A. Jumars (1984). Flow environments of aquatic benthos. Annual Review of Ecology and Systematics, 15, 303–328.

B. Okamura (1984). The effects of ambient flow velocity, colony size, and upstream colonies on the feeding success of bryozoa: I. Bugula stolonifera (Ryland), an arborescent species. Journal of Experimental Marine Biology and Ecology, 83, 179–193.

B. Okamura (1985). The effects of ambient flow velocity, colony size, and upstream colonies on the feeding success of bryozoa: II. Conopeum reticulum (Linnaeus), an encrusting species. Journal of Experimental Marine Biology and Ecology, 89, 69–80.

B. Okamura (1988). The influence of neighbors on the feeding of an epifaunal bryozoan. Journal of Experimental Marine Biology and Ecology, 120, 105–123.

S. R. Palumbi (1986). How body plans limit acclimation: responses of a Demosponge to wave force. Ecology, 67, 208–214.

J. R. Pawlik , C. A. Butman & V. R. Starczak (1991). Hydrodynamic facilitation of gregarious settlement of a reef-building tube worm. Science, 251, 421–424.

M. C. Pratt (2004). Effect of zooid spacing on bryozoan feeding success: is competition or facilitation more important? Biological Bulletin, 207, 17–27.

A. Rex , F. Montebon & H. T. Yap (1995). Metabolic responses of the scleractinian coral Porites cylindrica Dana to water motion. I. Oxygen flux studies. Journal of Experimental Marine Biology and Ecology, 186, 33–52.

D. I. Rubenstein & M. A. R. Koehl (1977). The mechanisms of filter feeding: some theoretical considerations. American Naturalist, 111, 981–994.

K. Schmidt-Nielsen (1984). Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press.

J. Shimeta & M. A. R. Koehl (1997). Mechanisms of particle selection by tentaculate suspension feeders during encounter, retention, and handling. Journal of Experimental Marine Biology and Ecology, 209, 47–73.

N. R. Silvester (1983). Some hydrodynamic aspects of filter feeding with rectangular-mesh nets. Journal of Theoretical Biology, 103, 265–286.

P. H. Warren & J. H. Lawton (1987). Invertebrate predator–prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia, 74, 231–235.

C. R. White & R. S. Seymour (2005) Allometric scaling of mammalian metabolism. Journal of Experimental Biology, 208, 1611–1619.

D. Wildish & D. Kristmanson (1997). Benthic Suspension Feeders and Flow. Cambridge: Cambridge University Press.

D. S. Wilson (1973). Food size selection among copepods. Ecology, 54, 909–914.

R. S. Wotton , B. Malmqvist & K. Leonardsson (2003). Expanding traditional views on suspension feeders – quantifying their roles as ecosystem engineers. Oikos, 101, 441–443.

M. J. Angilletta Jr. & A. E. Dunham (2003). The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. American Naturalist, 162, 332–342.

M. J. Angilletta Jr., T. D. Steury & M. W. Sears (2004). Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology, 44, 498–509.

J. D. Arendt & D. S. Wilson (1999). Countergradient selection for rapid growth in pumpkinseed sunfish: disentangling ecological and evolutionary effects. Ecology, 80, 2793–2798.

D. Atkinson (1994). Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research, 25, 1–58.

Atkinson, D. (1996). Ectotherm life-history responses to developmental temperature. In Animals and Temperature, eds. I. A. Johnston and A. F. Bennett . Cambridge: Cambridge University Press, pp. 183–204.

D. Atkinson & R. M. Sibly (1997). Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution, 12, 235–239.

D. Atkinson , B. J. Ciotti & D. J. S. Montagnes (2003). Protists decrease in size linearly with temperature: ca 2.5% ℃− 1. Proceedings of the Royal Society of London, Series B, 270, 2605–2611.

K. Banse (1995). Zooplankton – pivotal role in the control of ocean production. ICES Journal of Marine Science, 52, 265–277.

T. G. Benton & A. Grant (1999). Elasticity analysis as an important tool in evolutionary and population ecology. Trends in Ecology and Evolution, 14, 467–471.

D. Berrigan & E. L. Charnov (1994). Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos, 70, 474–478.

D. Berrigan & J. C Koella (1994). The evolution of reaction norms: simple models for age and size at maturity. Journal of Evolutionary Biology, 7, 549–566.

W. U. Blanckenhorn (2000). The evolution of body size: what keeps organisms small? Quarterly Review of Biology, 75, 385–407.

M. B. Bonsall , V. A. A. Jansen & M. P. Hassell (2004). Life history trade-offs assemble ecological guilds. Science, 306, 111–114.

J. E. Brommer (2000). The evolution of fitness in life-history theory. Biological Reviews, 75, 377–404.

J. E. Brommer , J. Merila & H. Kokko (2002). Reproductive timing and individual fitness. Ecology Letters, 5, 802–810.

J. E. Brommer , L. Gustafsson , H. Pietiainen & J. Merila (2004). Single-generation estimates of individual fitness as proxies for long-term genetic contribution. American Naturalist, 163, 505–517.

J. H. Brown & R. M Sibly . (2006). Life-history evolution under a production constraint. Proceedings of the National Academy of Sciences of the USA, 103, 17595–17599.

A. J. Bunker & A. G. Hirst (2004). Fecundity of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Marine Ecology Progress Series, 279, 161–181.

D. O. Conover & S. B. Munch (2002). Sustaining fisheries yields over evolutionary time scales. Science, 297, 94–96.

D. O. Conover & E. T. Schultz (1995). Phenotypic similarity and the evolutionary significance of countergradient variation. Trends in Ecology and Evolution, 10, 248–252.

T. Day & L. Rowe (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. American Naturalist, 159, 338–350.

G. Jong (2005). Is invariance across animal species just an illusion? Science, 309, 1193–1195.

B. Ernande , U. Dieckmann & M. Heino (2004). Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proceedings of the Royal Society of London, Series B, 271, 415–423.

J. F. Gillooly , E. L. Charnov , G. B. West , V. M. Savage & J. H. Brown (2002). Effects of size and temperature on development time. Nature, 417, 70–73.

J. F. Gillooly , E. L. Charnov , J. H. Brown , V. M. Savage & G. B. West (2003). Reply. Nature, 424, 270.

D. S. Glazier (2005). Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Reviews of the Cambridge Philosophical Society, 80, 611–662.

K. Gotthard & S. Nylin (1995). Adaptive plasticity and plasticity as an adaptation: aselective review of plasticity in animal morphology and life history. Oikos, 74, 3–17.

M. Heino , U. Dieckmann & O. Godø (2002a). Estimating reaction norms for age and size at maturation with reconstructed immature size distributions: a new technique illustrated by application to Northeast Arctic cod. ICES Journal of Marine Science, 59, 562–575.

M. Heino , U. Dieckmann & O. Godø (2002b). Measuring probabilistic reaction norms for age and size at maturation. Evolution, 56, 669–678.

A. G. Hirst & A. J. Bunker (2003). Growth in marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnology and Oceanography, 48, 1988–2010.

A. G. Hirst & T. Kiørboe (2002). Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series, 230, 195–209.

A. G. Hirst & A. López-Urrutia (2006). Effects of evolution on egg development time. Marine Ecology Progress Series, 326, 29–35.

A. I. Houston & J. M. McNamara (1992). Phenotypic plasticity as a state dependent life-history decision. Evolutionary Ecology, 6, 243–253.

E. Jeppesen , J. P. Jensen , M. Søndergaard et al. (2004). Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshwater Biology, 49, 432–447.

T. J. Kawecki & S. C. Stearns (1993). The evolution of life histories in spatially heterogeneous environments: optimal reaction norms revisited. Evolutionary Ecology, 7, 155–174.

T. Kiørboe & M. Sabatini (1994). Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. Journal of Plankton Research, 16, 1353–1366.

J. Kozłowski (1993). Measuring fitness in life-history studies. Trends in Ecology & Evolution, 8, 84–85.

J. Kozłowski & J. Weiner (1997). Interspecific allometries are by-products of body size optimization. American Naturalist, 149, 352–380.

J. Kozłowski , M. Konarzewski & A. T. Gawelczyk (2003). Cell size as a link between non-coding DNA and metabolic rate scaling. Proceedings of the National Academy of Sciences of the USA, 100, 14080–14085.

J. Kozłowski , M. Czarnołęski & M. Dańko (2004). Can optimal resource allocation models explain why ectotherms grow larger in the cold? Integrative and Comparative Biology, 44, 480–493.

D. Liang & S. Uye (1997). Population dynamics and production of the planktonic copepods in a eutrophic inlet of the Inland Sea of Japan. IV. Pseudodiaptomus marinus, the egg-carrying calanoid. Marine Biology, 128, 415–421.

K. Lorenzen & K. Enberg (2002). Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-species comparisons. Proceedings of the Royal Society of London, Series B, 269, 49–54.

M. D. McGurk (1986). Natural mortality of marine pelagic fish eggs and larvae: role of spatial patchiness. Marine Ecology Progress Series, 34, 227–242.

J. A. J. Metz , R. M. Nisbet & S. A. H. Geritz (1992). How should we define fitness for general ecological scenarios. Trends in Ecology and Evolution, 7, 198–202.

S. D. Mylius & O. Diekmann (1995). On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos, 74, 214–224.

S. Nee , N. Colegrave , S. A. West & A. Grafen (2005). The illusion of invariant quantities in life histories. Science, 309, 1236–1239.

M. D. Ohman & S. N. Wood (1996). Mortality estimation for planktonic copepods: Pseudocalanus newmani in a temperate fjord. Limnology and Oceanography, 41, 126–135.

E. M. Olsen , M. Heino , G. R. Lilly et al. (2004). Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature, 428, 932–935.

D. N. Reznick & C. K. Ghalambor (2005). Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences, 62, 791–801.

V. M. Savage , J. F. Gillooly , W. H. Woodruff et al. (2004). The predominance of quarter-power scaling in biology. Functional Ecology, 18, 257–282.

R. M. Sibly & D. Atkinson (1994). How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 8, 486–493.

R. M. Sibly & P. Calow (1983). An integrated approach to life-cycle evolution using selective landscapes. Journal of Theoretical Biology, 102, 527–547.

S. C. Stearns (2000). Life history evolution: successes, limitations, and prospects. Naturwissenschaften, 87, 476–486.

S. C. Stearns & J. Koella (1986). The evolution of phenotypic plasticity in life-history traits: predictions for norms of reaction for age- and size-at-maturity. Evolution, 40, 893–913.

H. Stibor & J. Lüning (1994). Predator induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina. Functional Ecology, 8, 97–101.

H. Stibor & D. M. Navarra (2000). Constraints on the plasticity of Daphnia magna influenced by fish-kairomones. Functional Ecology, 14, 455–459.

R. R. Strathmann , J. M. Staver & J. R. Hoffman (2002). Risk and the evolution of cell-cycle durations of embryos. Evolution, 56, 708–720.

U. H. Thygesen , K. D. Farnsworth , K. H. Andersen & J. E. Beyer (2005). How optimal life history changes with the community size-spectrum. Proceedings of the Royal Society of London Series B, 272, 1323–1331.

P. G. Verity & V. Smetacek (1996). Organism life cycle, predation, and the structure of marine pelagic ecosystems. Marine Ecology Progress Series, 130, 277–293.

M. R. Walsh , S. B. Munch , S. Chiba & D. O. Conover (2006). Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. Ecology Letters, 9, 142–148.

D. Waxman & S. Gavrilets (2005). 20 questions on adaptive dynamics. Journal of Evolutionary Biology, 18, 1139–1154.

D. Weetman & D. Atkinson (2002). Antipredator reaction norms for life history traits in Daphnia pulex: dependence on temperature and food. Oikos, 98, 299–307.

D. H. Anderson , S. Darring & A. C. Benke (1998). Growth of crustacean meiofauna in a forested floodplain swamp: implications for biomass turnover. Journal of the North American Benthological Society, 17, 21–36.

K. Banse & S. Mosher (1980). Adult body mass and annual production/biomass relationships of field populations. Ecological Monographs, 50, 355–379.

A. C. Benke (1998). Production dynamics of riverine chironomids: extremely high biomass turnover rates of primary consumers. Ecology, 79, 899–910.

A. C. Benke & D. I. Jacobi (1986). Growth rates of mayflies in a subtropical river and their implications for secondary production. Journal of the North American Benthological Society, 5, 107–114.

A. C. Benke & D. I. Jacobi (1994). Production dynamics and resource utilization of snag-dwelling mayflies in a blackwater river. Ecology, 75, 1219–1232.

A. C. Benke & K. A. Parsons (1990). Modelling black fly production dynamics in blackwater streams. Freshwater Biology, 24, 167–180.

A. C. Benke & J. B. Wallace (1980). Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream. Ecology, 61, 108–118.

A. C. Benke & J. B. Wallace (1997). Trophic basis of production among riverine caddisflies: implications for food web analysis. Ecology, 78, 1132–1145.

A. C. Benke , C. A. S. Hall , C. P. Hawkins et al. (1988). Bioenergetic considerations in the analysis of stream ecosystems. Journal of the North American Benthological Society, 7, 480–502.

A. C. Benke , J. B. Wallace , J. W. Harrison & J. W. Koebel (2001). Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river. Freshwater Biology, 46, 329–346.

M. B. Berg & R. A. Hellenthal (1992). Life histories and growth of lotic chironomids (Diptera: Chironomidae). Annals of the Entomological Society of America, 85, 578–589.

M. Bergtold & W. Traunspurger (2005). Benthic production by micro-, meio-, and macrobenthos in the profundal zone of an oligotrophic lake. Journal of the North American Benthological Society, 24, 321–329.

D. E. Bowles & R. T. Allen (1991). Secondary production of net-spinning caddisflies (Trichoptera: Curvipalpia) in an Ozark stream. Journal of Freshwater Ecology, 6, 93–101.

A. V. Brown & L. C. Fitzpatrick (1978). Life history and population energetics of the dobson fly, Corydalus cornutus. Ecology, 59, 1091–1108.

M. G. Butler (1982). Production dynamics of some arctic Chironomus larvae. Limnology and Oceanography, 27, 728–736.

M. Chadwick & A. D. Huryn (2005). Response of stream macroinvertebrate production to atmospheric nitrogen deposition and channel drying. Limnology and Oceanography 50, 228–236.

K. J. Collier & M. J. Winterbourn (1990). Population dynamics and feeding of mayfly larvae in some acid and alkaline New Zealand streams. Freshwater Biology, 23, 181–189.

H. Cyr & S. C. Walker (2004). An illusion of mechanistic understanding. Ecology, 85, 1802–1804.

R. W. J. Dixon & F. J. Wrona (1992). Life history and production of the predatory caddisfly Rhyacophila vao Milne in a spring-fed stream. Freshwater Biology, 27, 1–11.

D. Dudgeon (1996). Life histories, secondary production, and microdistribution of heptageniid mayflies (Ephemeroptera) in a tropical forest stream. Journal of Zoology, London, 240, 341–361.

D. Dudgeon (1997). Life histories, secondary production and microdistribution of hydropsychid caddisflies (Trichoptera) in a tropical forest stream. Journal of Zoology, London, 243, 191–210.

S. L. Eggert & T. M. Burton (1994). A comparison of Acroneuria lycorias (Plecoptera) production and growth in northern Michigan hard- and soft-water streams. Freshwater Biology, 32, 21–31.

D. S. Glazier (2006). The ¾ power law is not universal: evolution of isometric, ontogenetic metabolic scaling in pelagic animals. BioScience, 56, 325–332.

E. Grafius & N. H. Anderson (1979). Population dynamics, bioenergetics, and role of Lepidostoma quercina Ross (Trichoptera: Lepidostomatidae) in an Oregon woodland stream. Ecology, 60, 433–441.

E. Grafius & N. H. Anderson (1980). Population dynamics and the role of two species of Lepidostoma (Trichoptera: Lepidostomatidae) in an Oregon coniferous stream. Ecology, 61, 808–816.

M. B. Griffith , S. A. Perry & W. B. Perry (1994). Secondary production of macroinvertebrate shredders in headwater streams with different baseflow alkalinities. Journal of the North American Benthological Society, 13, 345–356.

R. J. Hall , T. F. Waters & E. F. Cook (1980). The role of drift dispersal in production ecology of a stream mayfly. Ecology, 61, 37–43.

J. S. Harding & M. J. Winterbourn (1993). Life history and production of Coloburiscus humeralis (Ephemeroptera: Oligoneuriidae) in two South Island high-country streams, New Zealand. New Zealand Journal of Marine and Freshwater Research, 27, 445–451.

Harvey, R. S., Vannote, R. L. & Sweeney, B. W. (1980). Life history, developmental processes, and energetics of the burrowing mayfly Dolania americana. In Advances in Ephemeroptera Biology, ed. J. F. Flannagan and K. E. Marshall . New York: Plenum Press. pp. 211–230.

A. D. Huryn (1990). Growth and voltinism of lotic midge larvae: patterns across an Appalachian mountain basin. Limnology and Oceanography, 35, 339–351.

A. D. Huryn (1996a). An appraisal of the Allen Paradox in a New Zealand trout stream. Limnology and Oceanography, 41, 243–252.

A. D. Huryn (1996b). Temperature dependent growth and life cycle of Deleatidium (Ephemeroptera: Leptophlebiidae) in two high-country streams in New Zealand. Freshwater Biology, 36, 351–361.

A. D. Huryn & J. B. Wallace (1986). A method for obtaining in situ growth rates of larval Chironomidae (Diptera) and its application to studies of secondary production. Limnology and Oceanography, 31, 216–222.

A. D. Huryn & J. B. Wallace (1987a). Production and litter processing by crayfish in an Appalachian mountain stream. Freshwater Biology, 18, 277–286.

A. D. Huryn & J. B. Wallace (1987b). Local geomorphology as a determinant of macrofaunal production in a mountain stream. Ecology, 68, 1932–1942.

A. D. Huryn & J. B. Wallace (1988). Community structure of Trichoptera in a mountain stream: spatial patterns of production and functional organization. Freshwater Biology, 20, 141–155.

A. D. Huryn & J. B. Wallace (2000). Life history and production of stream insects. Annual Review of Entomology, 45, 83–110.

A. D. Huryn , A. C. Benke & G. M. Ward (1995). Direct and indirect effects of regional geology on the distribution, production and biomass of the freshwater snail Elimia. Journal of the North American Benthological Society, 14, 519–534.

J. K. Jackson & S. G. Fisher (1986). Secondary production, emergence, and export of aquatic insects of a Sonoran Desert stream. Ecology, 67, 629–638.

K. M. Jop & K. W. Stewart (1987). Annual stonefly (Plecoptera) production in a second order Oklahoma Ozark stream. Journal of the North American Benthological Society, 6, 26–34.

K. Jop & S. W. Szczytko (1984). Life cycle and production of Isoperla signata (Banks) in a central Wisconsin trout stream. Aquatic Insects, 6, 81–100.

D. M. Kobuszewski & S. A. Perry (1994). Secondary production of Rhyacophila minora, Ameletus sp., and Isonychia bicolor from streams of low and circumneutral pH in the Appalachian mountains of West Virginia. Hydrobiologia, 273, 163–169.

W. Linklater & M. J. Winterbourn (1993). Life histories and production of two trichopteran shredders in New Zealand streams with different riparian vegetation. New Zealand Journal of Marine and Freshwater Research, 27, 61–70.

R. J. Lobinske , A. Ali & L. J. Stout (1996). Life history and productivity of Hexagenia limbata (Ephemeroptera: Ephemeridae) and selected physicochemical parameters in two tributaries of the Wekiva River, central Florida. Florida Entomologist, 79, 543–551.

R. J. Mackay & T. J. Waters (1986). Effects of small impoundments on hydropsychid caddisfly production in Valley Creek, Minnesota. Ecology, 67, 1680–1686.

R. Marchant (1986). Estimates of annual production for some aquatic insects from the La Trobe River, Victoria. Australian Journal of Marine and Freshwater Research, 37, 113–120.

R. Marchant & G. Hehir (1999). Growth, production and mortality of two species of Agapetus (Trichoptera: Glossosomatidae) in the Acheron River, south-east Australia. Freshwater Biology, 42, 655–671.

R. Marchant & G. J. Scrimgeour (1991). Correction to an estimate of production for Deleatidium. New Zealand Journal of Marine and Freshwater Research, 25, 355–357.

R. Marchant , L. Metzeling , A. Graesser & P. Suter (1985). The organization of macroinvertebrate communities in the major tributaries of the LaTrobe River, Victoria, Australia. Freshwater Biology, 15, 315–331.

D. J. Mitchell & L. A. Smock (1991). Distribution, life history and production of crayfish in the James River, Virginia. American Midland Naturalist, 126, 353–363.

A. Morin & N. Bourassa (1992). Modèles empiriques de la production annuelle et du rapport P/B d'invertèbrès benthiques d'eau courante. Canadian Journal of Fisheries and Aquatic Sciences, 49, 532–539.

A. Morin & P. Dumont (1994). A simple model to estimate growth rate of lotic insect larvae and its value for estimating population and cumminity production. Journal of the North American Benthological Society, 13, 357–367.

U. Nolte & T. Hoffman (1992). Fast life in cold water: Diamesa incallida (Chironomidae). Ecography, 15, 25–30.

E. C. O'Doherty (1985). Stream-dwelling copepods: their life history and ecological significance. Limnology and Oceanography, 30, 554–564.

C. P. Parker & J. R. Voshell Jr. (1983). Production of filter-feeding Trichoptera in an impounded and a free-flowing river. Canadian Journal of Zoology, 61, 70–87.

C. Plante & J. A. Downing (1989). Production of freshwater invertebrate populations in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1489–1498.

A. Ramírez & C. M. Pringle (1998). Structure and production of a benthic insect assemblage in a neotropical stream. Journal of the North American Benthological Society, 17, 443–463.

C. T. Robinson , L. M. Reed & G. W. Minshall (1992). Influence of flow regime on life history, production, and genetic structure of Baetis tricaudatus (Ephemeroptera) and Hesperoperla pacifica (Plecoptera). Journal of the North American Benthological Society, 11, 278–289.

E. B. Rodgers (1982). Production of Caenis (Ephemeroptera: Caenidae) in elevated water temperatures. Freshwater Invertebrate Biology, 1, 2–16.

C. E. Roeding & L. A. Smock (1989). Ecology of macroinvertebrate shredders in a low-gradient sandy-bottomed stream. Journal of the North American Benthological Society, 8, 149–161.

R. M. Sallenave & K. E. Day (1991). Secondary production of benthic stream invertebrates in agricultural watersheds with different land management practices. Chemosphere, 23, 57–76.

M. R. Sanchez & A. C. Hendricks (1997). Life history and secondary production of Cheumatopsyche spp. in a small Appalachian stream with two different land uses on its watershed. Hydrobiologia, 354, 127–139.

W. Schönborn (1977). Production studies on protozoa. Oecologia (Berlin), 27, 171–184.

R. A. Short & J. V. Ward (1980). Life cycle and production of Skwala parallela (Frison) (Plecoptera: Perlodidae) in a Colorado mountain stream. Hydrobiologia, 69, 273–275.

R. A. Short , E. H. Stanley , J. W. Harrison & C. R. Epperson (1987). Production of Corydalus cornutus (Megaloptera) in four streams differing in size, flow, and temperature. Journal of the North American Benthological Society, 6, 105–114.

L. C. Smith & L. A. Smock (1992). Ecology of invertebrate predators in a Coastal Plain stream. Freshwater Biology, 28, 319–329.

L. A. Smock , E. Gilinsky & D. L. Stoneburner (1985). Macroinvertebrate production in a southeastern United States blackwater stream. Ecology, 66, 1491–1503.

D. M. Stagliano & M. R. Whiles (2002). Macroinvertebrate production and trophic structure in a tallgrass prairie headwater stream. Journal of the North American Benthological Society, 21, 97–113.

T. K. Stead , J. M. Schmid-Araya & A. G. Hildrew (2005). Secondary production of a stream metazoan community: does meiofauna make a difference? Limnology and Oceanography, 50, 398–403.

A. M. Takeda & M. Grzybkowska (1997). Seasonal dynamics and production of Campsurus violaceus nymphs (Ephemeroptyera, Polymitarcidae) in the Baia River, upper Parana River floodplain, Brazil. Hydrobiologia, 356, 149–155.

T. F. Waters (1969). The turnover ratio in production ecology of freshwater invertebrates. American Naturalist, 103, 173–185.

T. F. Waters (1977). Secondary production in inland waters. Advances in Ecological Research, 10, 91–164.

T. F. Waters (1987). The effect of growth and survival patterns upon the cohort P/B ratio. Journal of the North American Benthological Society, 6, 223–229.

T. J. Waters & J. C. Hokenstrom (1980). Annual production and drift of the stream amphipod Gammarus pseudolimnaeus in Valley Creek, Minnesota. Limnology and Oceanography, 25, 700–710.

N. Whitmore & A. D. Huryn (1999). Life history and production of Paranephrops zealandicus in a forest stream, with comments about the sustainable harvest of a freshwater crayfish. Freshwater Biology, 42, 1–11.

L. D. Willis & A. C. Hendricks (1992). Life history, growth, survivorship, and production of Hydropsyche slossonae in Mill Creek, Virginia. Journal of the North American Benthological Society, 11, 290–303.

M. J. Winterbourn (1974). The life histories, trophic relations and production of Stenoperla prasina (Plecoptera) and Deleatidium sp. (Ephemeroptera) in a New Zealand river. Freshwater Biology, 4, 507–524.

M. J. Winterbourn (1996). Life history, production and food of Aphrophila neozelandica (Diptera: Tipulidae) in a New Zealand Stream. Aquatic Insects, 18, 45–53.

N. Bourassa & A. Morin (1995). Relationships between size structure of invertebrate assemblages and trophy and substrate composition in streams. Journal of the North American Benthological Society, 14, 393–403.

D. B. Buchwalter & S. N. Luoma (2005). Differences in dissolve cadmium and zinc uptake among stream insects: mechanistic explanations. Environmental Science and Technology, 39, 498–504.

D. B. Buchwalter , J. J. Jenkins & L. R. Curtis (2002). Respiratory strategy is a major determinant of [3H] water and [14C] chlorpyfiros uptake in aquatic insects. Canadian Journal of Fisheries and Aquatic Science, 59, 1315–1322.

J. A. Camargo , A. Alonso & A. Salamanca (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58, 1255–1267.

K. W. Cummins (1974). Structure and function of stream ecosystems. BioScience, 24, 631–641.

S. Dolédec , N. Phillips , M. Scarsbrook , R. H. Riley & C. R. Townsend (2006). A comparison of structural and functional approaches to determining landuse effects on grassland stream communities. Journal of the North American Benthological Society, 25, 44–60.

B. J. Downes , P. S. Lake , E. S. G. Schreiber & A. Glaister (1998). Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs, 68, 237–257.

T. M. Fenchel (1978). The ecology of micro and meiobenthos. Annual Review of Ecology and Systematics, 9, 9–121.

A. S. Flecker & C. R. Townsend (1994). Community-wide consequences of trout introduction in New Zealand streams. Ecology Applications, 4, 798–807.

R. L. Fuller & J. B. Bucher (1991). A portable chamber for measuring algal primary production in streams. Hydrobiologia, 209, 155–159.

S. Gayraud , B. Statzner , P. Bady et al. (2003). Invertebrate traits for the biomonitoring of large European Rivers: an initial assessment of alternative metrics. Freshwater Biology, 48, 2045–2064.

J. W. Grubaugh , J. B. Wallace & E. S. Houston (1996). Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Canadian Journal of Fisheries and Aquatic Sciences, 53, 896–909.

D. D. Hart & C. Finelli (1999). Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics, 30, 363–395.

A. J. Hendriks & A. Heikens (2001). The power of size: 2. Rate constants and equilibrium ratios for accumulation of inorganic substances related to species weight. Environmental Toxicology and Chemistry, 20, 1421–1437.

A. G. Hildrew & C. R. Townsend (1977). The influence of substrate on the functional response of Plectrocnemia conspersa (Curtis) larvae (Trichoptera: Polycentropodidae). Oecologia, 31, 21–26.

A. D. Huryn (1998). Ecosystem-level evidence for top-down and bottom-up control of production in a grassland stream system. Oecologia, 115, 173–183.

L. B. Johnson , D. H. Breneman & C. Richards (2003). Macroinvertebrate community structure and function associated with large wood in low gradient streams. River Research and Applications, 19, 199–218.

P. M. Kiffney & W. H. Clements (1996). Size-dependent response of macroinvertebrates to metals in experimental streams. Environmental Toxicology and Chemistry, 15, 1352–1356.

S. L. Kohler & M. A. McPeek (1989). Predation risk and the foraging behaviour of competing stream insects. Ecology, 70, 1811–1825.

D. A. Lytle (2001). Disturbance regimes and life history evolution. American Naturalist, 157, 525–536.

D. A. Lytle (2002). Flash floods and aquatic insect life-history evolution: evaluation of multiple models. Ecology, 83, 370–385.

C. D. Matthaei & C. R. Townsend (2000). Long-term effects of local disturbance history on mobile stream invertebrates. Oecologia, 125, 119–126.

C. D. Matthaei , K. A. Peacock & C. R. Townsend (1999). Scour and fill patterns in a New Zealand stream and potential implications for invertebrate refugia. Freshwater Biology, 42, 41–58.

A. R. McIntosh & C. R. Townsend (1994). Interpopulation variation in mayfly anti-predator tactics: differential effects of contrasting predatory fish. Ecology, 75, 2078–2090.

S. Mérigoux & S. Dolédec (2004). Hydraulic requirements of stream communities: a case study of invertebrates. Freshwater Biology, 49, 600–613.

N. L. Poff (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16, 391–409.

M. E. Power (1992). Habitat heterogeneity and the functional significance of fish in river food webs. Ecology, 73, 1675–1688.

V. H. Resh , A. G. Hildrew , B. Statzner & C. R. Townsend (1994). Theoretical habitat templets, species traits, and species richness: a synthesis of long-term ecological research on the Upper Rhone River in the context of concurrently developed ecological theory. Freshwater Biology, 31, 539–554.

C. Richards , R. J. Haro , L. B. Johnson & G. E. Host (1997). Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 37, 219–230.

B. J. Robson , L. A. Barmuta & P. G. Fairweather (2005). Methodological and conceptual issues in the search for a relationship between animal body-size distributions and habitat architecture. Marine and Freshwater Research, 56, 1–11.

M. R. Scarsbrook & C. R. Townsend (1993). Stream community structure in relation to spatial and temporal variation: a habitat templet study of two contrasting New Zealand streams. Freshwater Biology, 29, 395–410.

P. E. Schmid , M. Tokeshi & J. M. Schmid-Araya (2002). Scaling in stream communities. Proceedings of the Royal Society London, Series B, 269, 2587–2594.

B. Statzner , J. A. Gore & V. H. Resh (1988). Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society, 7, 307–360.

B. Statzner , S. Dolédec & B. Hugueny (2004). Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography, 27, 470–480.

H. Taniguchi & M. Tokeshi (2004). Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology, 49, 1164–1178.

J. R. Thomson (2002). The effects of hydrological disturbance on the densities of macroinvertebrate predators and their prey in a coastal stream. Freshwater Biology, 47, 1333–1351.

R. M. Thompson & C. R. Townsend (1999). The effect of seasonal variation on the community structure and food-web attributes of two streams: implications for food-web science. Oikos, 87, 75–88.

R. M. Thompson & C. R. Townsend (2004). Land-use influences on New Zealand stream communities: effects on species composition, functional organization, and food-web structure. New Zealand Journal of Marine and Freshwater Research, 38, 595–608.

R. M. Thompson & C. R. Townsend (2005). Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos, 108, 137–148.

C. R. Townsend (2003). Individual, population, community and ecosystem consequences of a fish invader in New Zealand streams. Conservation Biology, 17, 38–47.

C. R. Townsend & A. G. Hildrew (1994). Species traits in relation to a habitat templet for river systems. Freshwater Biology, 31, 265–275.

C. R. Townsend , S. Dolédec & M. R. Scarsbrook (1997). Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology, 37, 367–388.

C. R. Townsend , R. M. Thompson , A. R. McIntosh et al. (1998). Disturbance, resource supply and food-web architecture in streams. Ecology Letters, 1, 200–209.

N. Usio & C. R. Townsend (2000). Distribution of the New Zealand crayfish Paranephrops zealandicus in relation to stream physicochemistry, predatory fish and invertebrate prey. New Zealand Journal of Marine and Freshwater Science, 34, 557–567.

N. Usio & C. R. Townsend (2004). Roles of crayfish: consequences of predation and bioturbation for stream invertebrates. Ecology, 85, 807–822.

R. L. Vannote , G. W. Minshall , K. W. Cummins , J. R. Sedell & C. E. Cushing (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

M. J. Winterbourn , J. S. Rounick & B. Cowie (1981). Are New Zealand stream ecosystems really different? New Zealand Journal of Marine and Freshwater Research, 15, 321–328.

S. Achord , P. S. Levin & R. W. Zabel (2003). Density-dependent mortality in Pacific salmon: the ghost of impacts past? Ecology Letters, 6, 335–342.

A. A. Aljetlawi , E. Sparrevick & K. Leonardsson (2004). Prey-predator size-dependent functional response: derivation and rescaling to the real world. Journal of Animal Ecology, 73, 239–252.

D. Beare , S. D. Batten , M. Edwards et al. (2003). Summarising spatial and temporal information in CPR data. Progress in Oceanography, 58, 217–233.

J. A. Bechara , G. Moreau & L. Hare (1993). The impact of brook trout (Salvelinus fontinalis) on an experimental stream benthic community: the role of spatial and size refugia. Journal of Animal Ecology, 62, 451–464.

S. C. Blumenshine , D. M. Lodge & J. R. Hodgson (2000). Gradient of fish predation alters body size distributions of lake benthos. Ecology, 81, 374–386.

J. R. Breck & M. J. Gitter (1983). Effect of fish size on the reactive distance of bluegill (Lepomis machrochirus). Canadian Journal of Fisheries and Aquatic Sciences, 40, 162–167.

J. R. Brett & N. R. Glass (1973). Metabolic rates and critical swimming speed of sockeye salmon Oncorynchus nerka in relation to size and temperature. Journal of the Fisheries Research Board of Canada, 30, 379–387.

J. L. Brooks (1968). The effects of prey size selection by lake planktivores. Systematic Zoology, 17, 273–291.

J. H. Brown & J. J. Gillooly (2003). Ecological food webs: high-quality data facilitate theoretical unification. Proceedings of the National Academy of Sciences USA, 100, 1467–1468.

P. Byström (2006). Recruitment pulses induce cannibalistic giants in Arctic Char. Journal of Animal Ecology, 75, 434–444.

M.-F. Cattin , L.-F. Bersier , C. Banasek-Richter , R. Baltensberger & J.-P. Gabriel (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839.

J. M. Chase (1999). Food web effects of prey size refugia: variable interactions and alternative stable equilibria. American Naturalist, 154, 559–570.

J. E. Cohen , F. Briand & C. M. Newman (1986). A stochastic theory of community food webs. III. Predicted and observed lengths of food chains. Proceedings of the Royal Society of London B, 228, 317–353.

F. Courchamp , M. Langlais & G. Sugihara (1999). Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology, 68, 292–293.

S. H. Cousins (1980). A trophic continuum derived from plant structure, animal size and a detritus cascade. Journal of Theoretical Biology, 82, 607–618.

A. M. Roos & L. Persson (2002). Size-dependent life-history traits promote catastrophic collapses of top predators. Proceedings of the National Academy of Sciences USA, 99, 12907–12912.

P. C. Ruiter , A. M. Neutel & J. C. Moore (1995). Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269, 1257–1260.

D. B. Eggleston (1990). Functional response of blue crabs Callinectes sapidus Rathburn feeding on juvenile oysters Crassostrea virginica (Gmelin): effects of predator sex and size, and prey size. Journal of Experimental Marine Biology and Ecology, 143, 73–90.

M. C. Emmerson & D. G. Raffaelli (2004). Body size, patterns of interaction strength and the stability of a real food web. Journal of Animal Ecology, 73, 399–409.

F. E. Fry & E. T. Cox (1970). A relation of size to swimming speed in rainbow trout. Journal of the Fisheries Research Board of Canada, 27, 976–978.

P. S. Giller , H. Hillebrand , U.-G. Berninger et al. (2004). Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos, 104, 423.

S. W. Hewett (1980). The effect of prey size on the functional and numerical responses of a protozoan predator to its prey. Ecology, 61, 1075–1081.

M. Huxham , S. Beaney & D. Raffaelli (1996). Do parasites reduce the chances of triangulation in a real food web? Oikos, 76, 284–300.

M. Kislalioglu & R. N. Gibson (1976). Prey ‘handling time’ and its importance in food selection by the 15-spined stickleback, Spinachia spinachia (L). Journal of Experimental Marine Biology and Ecology, 25, 151–158.

M. E. Ledger & A. G. Hildrew (2005). The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environmental Pollution, 137, 103–118.

C. L. Lehman & D. Tilman (2000). Biodiversity, stability, and productivity in competitive communities. American Naturalist, 156, 534–552.

S. Lundberg & L. Persson (1993). Optimal body size and resource density. Journal of Theoretical Biology, 164, 163–180.

J. Memmott , N. D. Martinez & J. E. Cohen (2000). Predators, parasitoids and pathogens: species richness, trophic generality and body size in a natural food web. Journal of Animal Ecology, 69, 1–15.

R. A. Pastorok (1981). Prey vulnerability and size selection by Chaoborus larvae. Ecology, 62, 1311–1324.

L. Persson , K. Leonardsson , A. M. Roos , M. Gyllenberg & B. Christensen (1998). Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theoretical Population Biology, 54, 270–293.

O. L. Petchey , A. L. Downing , G. G. Mittelbach et al. (2004). Species loss and the structure and functioning of multitrophic aquatic systems. Oikos, 104, 467–478.

P. Pitta , A. Giannakourou & U. Christaki (2001). Planktonic ciliates in the oligotrophic Mediterranean Sea: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquatic Microbial Ecology, 24, 297–311.

D. Policansky & J. J. Magnuson (1998). Genetics, metapopulations and ecosystem management of fisheries. Ecological Applications, 8, 119–123.

G. A. Polis (1991). Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist, 138, 123–155.

G. H. Pyke (1984). Optimal foraging theory: a critical review. Annual Review of Ecology and Systematics, 15, 523–575.

G. H. Pyke , H. R. Pulliam & E. L. Charnov (1977). Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology, 52, 137–154.

R. E. Ricklefs (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1.

M. Scheffer & S. R. Carpenter (2003). Catastophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648–656.

T. W. Schoener (1969). Models of optimal size for solitary predators. American Naturalist, 103, 277–313.

P. E. Schmid , M. Tokeshi & J. M. Schmid-Araya (2000). Relation between population density and body-size in stream communities. Science, 289, 1557–1560.

J. M. Schmid-Araya , A. G. Hildrew , A. Robertson , P. E. Schmid & J. Winterbottom (2002a). The importance of meiofauna in food webs: evidence from an acid stream. Ecology, 83, 1271–1285.

J. M. Schmid-Araya , P. E. Schmid , A. Robertson et al. (2002b). Connectance in stream food webs. Journal of Animal Ecology, 71, 1056–1062.

M. A. Scott & W. W. Murdoch (1983). Selective predation by the backswimmer, Notonecta. Limnology and Oceanography, 28, 352–366.

W. J. P. Smyly (1980). Food and feeding of aquatic larvae of the midge Chaoborus flavicans (Meigen) (Diptera: Chaoboridae) in the laboratory. Hydrobiologia, 70, 179–188.

M. Solan , B. J. Cardinale , A. L. Downing et al. (2004). Extinction and ecosystem function in the marine benthos. Science, 306, 1177–1180.

K. Spitze (1985). Functional response of an ambush predator: Chaoborus americanus predation on Daphnia pulex. Ecology, 66, 938–949.

D. J. Thompson (1975). Towards a predator-prey model incorporating age structure: the effects of predator and prey size on the predation of Daphnia magna by Ischnura elegans. Journal of Animal Ecology, 44, 907–916.

F. Tripet & N. Perrin (1994). Size-dependent predation by Dugesia lugubris (Turbellaria) on Physa acuta (Gastropoda): experiments and model. Functional Ecology, 8, 458–463.

H. Turesson , A. Persson & C. Brönmark (2002). Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecology of Freshwater Fish, 11, 223–233.

P. H. Warren (1989). Spatial and temporal variation in the structure of a freshwater food web. Oikos, 55, 299–311.

Warren, P. H. (2005). Wearing Elton's wellingtons: why body size still matters in food webs. In Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change, ed. P. C. Ruiter , V. Wolters and J. C. Moore . San Diego: Academic Press.

R. M. Warwick & K. R. Clarke (1991). A comparison of some methods for analysing changes in benthic community structure. Journal of the Marine Biological Association, UK, 71, 225–244.

R. J. Williams & N. D. Martinez (2000). Simple rules yield complex food webs. Nature, 404, 180–183.

G. Woodward & A. G. Hildrew (2002a). Food web structure in riverine landscapes. Freshwater Biology, 47, 777–798.

G. Woodward & A. G. Hildrew (2002b). Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71, 1063–1074.

G. Woodward & A. G. Hildrew (2002c). Differential vulnerability of prey to an invading top predator: integrating field surveys and laboratory experiments. Ecological Entomology, 27, 732–744.

G. Woodward , D. C. Speirs & A. G. Hildrew (2005c). Quantification and resolution of a complex, size-structured food web. Advances In Ecological Research, 36, 85–135.

E. T. Borer , E. W. Seabloom , J. B. Shurin et al. (2005). What determines the strength of a trophic cascade? Ecology, 86, 528–537.

K. P. Brodersen & N. J. Anderson (2002). Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology, 47, 1137–1157.

S. R. Carpenter & J. F. Kitchell (1993). The Trophic Cascade in Lakes. Cambridge, England: Cambridge University Press.

S. R. Carpenter & P. R. Leavitt (1991). Temporal variation in a paleolimnological record arising from a trophic cascade. Ecology, 72, 277–285.

S. R. Carpenter & D. M. Lodge (1986). Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26, 341–370.

S. R. Carpenter , J. F. Kitchell & J. R. Hodgson (1985). Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. Bioscience, 35, 634–639.

K. Christoffersen (2001). Predation on Daphnia pulex by Lepidurus arcticus. Hydrobiologia, 442, 223–229.

L. B. Crowder & W. E. Cooper (1982). Habitat structural complexity and the interaction between bluegills and their prey. Ecology, 63, 1802–1813.

K. Cuddington & P. Yodzis (2002). Predator-prey dynamics and movement in fractal environments. American Naturalist, 160, 119–134.

S. Declerck , J. Vandekerkhove , L. Johannson et al. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology, 86, 1905–1915.

S. Diehl (1988). Foraging efficiency of 3 fresh-water fishes: effects of structural complexity and light. Oikos, 53, 207–214.

S. Diehl (1992). Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology, 73, 1646–1661.

W. K. Dodds (1991). Community interactions between the filamentous alga Cladophora glomerata (L.) Kuetzing, its epiphytes, and epiphyte grazers. Oecologia, 85, 572–580.

K. T. Frank , B. Petrie , J. S. Choi & W. C. Leggett (2005). Trophic cascades in a formerly cod-dominated ecosystem. Science, 308, 1621–1623.

J. H. Grabowski (2004). Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology, 85, 995–1004.

F. Grevstad & B. Klepetka (1992). The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia, 92, 399–404.

D. S. Gruner (2004). Attenuation of top-down and bottom-up forces in a complex terrestrial community. Ecology, 85, 3010–3022.

N. G. Hairston , F. E. Smith & L. G. Slobodkin (1960). Community structure, population control, and competition. American Naturalist, 94, 421–425.

P. A. Hamback , L. Oksanen , P. Ekerholm et al. (2004). Predators indirectly protect tundra plants by reducing herbivore abundance. Oikos, 106, 85–92.

L.-A. Hansson , H. Annadotter , E. Bergman et al. (1998). Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems, 1, 558–574.

K. Heck & T. Thoman (1981). Experiments on predator-prey interactions in vegetated aquatic habitats. Journal of Experimental Marine Biology Ecology, 53, 125–134.

A. G. Hildrew , G. Woodward , J. H. Winterbottom & S. Orton (2004). Strong density dependence in a predatory insect: large-scale experiments in a stream. Journal of Animal Ecology, 73, 448–458.

R. D. Holt (2000). Trophic cascades in terrestrial ecosystems. Reflections on Polis et al. Trends in Evolution and Ecology, 15, 444–445.

M. Jeffries (1993). Invertebrate colonisation of artificial pondweeds of differing fractal dimension. Oikos, 67, 142–148.

Jeppesen, E. & Sammalkorpi, I. (2002). In Handbook of Restoration Ecology, ed. M. Perrow and T. Davy . Vol. 2. Cambridge: Cambridge University Press, pp. 297–324.

E. Jeppesen , K. Christoffersen , F. Landkildehus et al. (2001). Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic Char (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia, 442, 329–337.

E. Jeppesen , J. P. Jensen , C. Jensen et al. (2003a). The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: A study of 466 lakes from the temperate zone to the arctic. Ecosystems, 6, 313–325.

E. Jeppesen , J. P. Jensen , T. L. Lauridsen et al. (2003b). Sub-fossils in the surface sediment as proxies for community structure and dynamics of zooplankton lakes: a study of 150 lakes from Denmark, New Zealand, the Faroe Islands and Greenland. Hydrobiologia, 491, 321–330.

L. Jiang & P. J. Morin (2005). Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. American Naturalist, 165, 350–363.

A. R. Johnson , C. Hatfield & B. Milne (1995). Simulated diffusion dynamics in river networks. Ecological Modelling, 83, 311–325.

J. I. Jones & C. D. Sayer (2003). Does the fish–invertebrate–periphyton cascade precipitates plant loss in shallow lakes? Ecology, 84, 2155–2167.

J. I. Jones & S. Waldron (2003). Combined stable isotope and gut contents analysis of food webs in plant dominated, shallow lakes. Freshwater Biology, 48, 1396–1407.

T. Jonsson , J. E. Cohen & S. R. Carpenter (2005). Food webs, body size, and species abundance in ecological community description. Advances in Ecological Research, 36, 1–84.

T. Lauridsen , E. Jeppesen , F. Landkildehus , K. Christoffersen & M. Søndergaard (2001). Horizontal distribution of cladocerans in arctic Greenland lakes. Hydrobiologia, 442, 107–116.

L. Liboriussen & E. Jeppesen (2003). Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology, 48, 418–431.

K. S. McCann , A. Hastings & D. R. Strong (1998). Trophic cascades and trophic trickles in pelagic food webs. Proceedings of the Royal Society of London Series B-Biological Sciences, 265, 205–209.

A. R. McIntosh & C. R. Townsend (1996). Interactions between fish, grazing invertebrates and algae in a New Zealand stream: A trophic cascade mediated by fish induced changes to grazer behaviour? Oecologia, 108, 174–181.

F. Micheli (1999). Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science, 285, 1396–1398.

J. C. Moore , P. C. Deruiter & H. W. Hunt (1993). Influence of productivity on the stability of real and model-ecosystems. Science, 261, 906–908.

J. C. Moore , E. L. Berlow , D. C. Coleman et al. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7, 584–600.

M. D. Moran & A. R. Scheidler (2002). Effects of nutrients and predators on an old-field food chain: interactions of top-down and bottom-up processes. Oikos, 98, 116–124.

B. Moss (1990). Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 200/201, 367–377.

W. G. Nelson & E. Bensdorff (1990). Fish predation and habitat complexity: are complexity thresholds real? Journal of Experimental Marine Biology and Ecology, 141, 183–194.

A. M. Neutel , J. A. P. Heesterbeek & P. C. Ruiter (2002). Stability in real food webs: weak links in long loops. Science, 296, 1120–1123.

L. Oksanen (1983). Trophic exploitation and arctic phytomass patterns. American Naturalist, 122, 45–52.

L. Oksanen , S. D. Fretwell , J. Arruda & P. Niemela (1981). Exploitation ecosystems in gradients of primary productivity. American Naturalist, 118, 240–261.

N. Okun & T. Mehner (2005). Interactions between juvenile roach or perch and their invertebrate prey in littoral reed versus open water enclosures. Ecology of Freshwater Fishes, 14, 150–160.

M. L. Pace , J. J. Cole , S. R. Carpenter & J. F. Kitchell (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483–488.

R. T. Paine (1980). Food webs: linkage, interaction strength and community infrastructure. Journal of Animal Ecology, 49, 667–685.

M. R. Perrow , M.-L. Meijer , P. Dawidowicz & H. Coops (1997). Biomanipulation in shallow lakes: state of the art. Hydrobiologia, 342/343, 355–365.

L. Persson (1999). Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos, 85, 385–397.

L. Persson & P. Eklöv (1995). Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology, 76, 763–784.

G. A. Polis & D. R. Strong (1996). Food web complexity and community dynamics. American Naturalist, 147, 813–846.

G. A. Polis , A. L. W. Sears , G. R. Huxel , D. R. Strong & J. Maron (2000). When is a trophic cascade a trophic cascade? Trends in Ecology and Evolution, 15, 473–475.

M. E. Power (2000). What enables trophic cascades? Commentary on Polis et al. Trends in Ecology and Evolution, 15, 443–444.

M. E. Power , W. J. Matthews & A. J. Stewart (1985). Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology, 66, 1448–1456.

E. L. Preisser (2003). Field evidence for a rapidly cascading underground food web. Ecology, 84, 869–874.

D. Raffaelli (2002). Ecology – from Elton to mathematics and back again. Science, 296, 1035.

W. J. Ripple & R. L. Beschta (2004). Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience, 54, 755–766.

G. W. Roemer , C. J. Donlan & F. Courchamp (2002). Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proceedings of the National Academy of Sciences of the United States of America, 99, 791–796.

P. Romare , S. Berg , T. Lauridsen & E. Jeppesen (2003). Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshwater Biology, 48, 1353–1362.

O. Sarnelle & R. A. Knapp (2005). Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes. Limnology and Oceanography, 50, 2032–2042.

M. Scheffer , S. H. Hosper , M. L. Meijer , B. Moss & E. Jeppesen (1993). Alternative equilibria in shallow lakes. Trends in Ecology and Evolution, 8, 275–279.

D. E. Schindler & M. D. Scheuerell (2002). Habitat coupling in lake ecosystems. Oikos, 98, 177–189.

O. J. Schmitz , V. Krivan & O. Ovadia (2004). Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters, 7, 153–163.

A. R. E. Sinclair , C. J. Krebs , J. M. Fryxell et al. (2000). Testing hypotheses of trophic level interactions: a boreal forest ecosystem. Oikos, 89, 313–328.

D. R. Strong (1992). Are trophic cascades all wet – differentiation and donor-control in speciose ecosystems. Ecology, 73, 747–754.

D. R. Strong , H. K. Kaya , A. V. Whipple et al. (1996). Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Oecologia, 108, 167–173.

R. M. Timms & B. Moss (1984). Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnology and Oceanography, 29, 472–486.

J. T. Turner & P. A. Tester (1997). Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnology and Oceanography, 42, 1203–1214.

Vander M. J. Zanden , T. E. Essington & Y. Vadeboncoeur (2005). Is pelagic top-down control in lakes augmented by benthic energy pathways? Canadian Journal of Fisheries and Aquatic Sciences, 62, 1422–1431.

R. H. Whittaker (1961). Experiments with radiophosphorus tracer in aquarium microcosms. Ecological Monographs, 31, 157–188.

N. J. Willby , J. R. Pygott & J. W. Eaton (2001). Inter-relationships between standing crop, biodiversity and trait attributes of hydrophytic vegetation in artificial waterways. Freshwater Biology, 46, 883–902.

I. J. Winfield (1986). The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythropthalmus, and perch, Perca fluviatilis. Journal of Fish Biology, 29, 37–48.

G. Woodward & A. G. Hildrew (2001). Invasion of a stream food web by a new top predator. Journal of Animal Ecology, 70, 273–288.

B. Worm & R. A. Myers (2003). Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology, 84, 162–173.

M. Bittelli , G. S. Campbell & M. Flury (1999). Characterization of particle-size distribution in soils with a fragmentation model. Soil Science Society America Journal, 63, 782–788.

L. Borda-de-Áqua , S. P. Hubbell & M. McAllister (2002). Species-area curves, diversity indices, and species abundance distributions: a multifractal analysis. The American Naturalist, 159, 138–155.

J. H. Brown , V. K. Gupta , B.-L. Li et al. (2002). The fractal nature of nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of the Royal Society London B, 357, 619–626.

J. H. Brown , J. F. Gillooly , A. P. Allan , V. M. Savage & G. B. West (2004). Towards a metabolic theory of ecology. Ecology, 85, 1771–1789.

A. Chhabra & R. V. Jensen (1989). Direct determination of the f(α) singularity spectrum. Physical Review Letters, 62, 1327–1330.

S. D. Bartolo , S. Gabriele & R. Gaudio (2000). Multifractal behaviour of river networks. Hydrology and Earth System Sciences, 4, 105–112.

P. S. Dodds , D. H. Rothman & J. S. Weitz (2001). Re-examination of the ‘3/4 law’ of metabolism. Journal of Theoretical Biology, 209, 9–27.

M. Dornelas , S. R. Connolly & T. P. Hughes (2006). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80–82.

J. B. Drake & J. F. Weishampel (2000). Multifractal analysis of canopy height measures in a longleaf pine savanna. Forest Ecology and Management, 128, 121–127.

B. J. Enquist & K. J. Niklas (2001). Invariant sclaing relations across tree-dominated communities. Nature, 410, 655–660.

R. S. Etienne (2005). A new sampling formula for neutral biodiversity. Ecology Letters, 8, 253–260.

Evertsz, C. J. G. & Mandelbrot, B. B. (1992). Multifractal measures. In Chaos and Fractals. New Frontiers of Science, ed. H. Peitgen , H. Jürgens and D. Saupe . New York: Springer Verlag, pp. 921–953.

H. Feder (1988). Fractals. New York: Plenum Press.

C. Fesl (2002). Niche-oriented species-abundance models: different approaches of their application to larval chironomid (Diptera) assemblages in a large river. Journal of Animal Ecology, 71, 1085–1094.

T. Gisiger (2001). Scale invariance in biology: coincidence or footprint of a universal mechanism? Biological Review, 76, 161–209.

T. C. Halsey , M. H. Jensen , L. P. Kadanoff , I. Procaccia & B. I. Shraiman (1986). Fractal measures and their singularities: the characterization of strange sets. Physical Review A, 33, 1141–1151.

J. Harte , A. Kinzig & J. Green (1999). Self-similarity in the distribution and abundance of species. Science, 284, 334–336.

H. Hentschel & I. Procaccia (1983). The infinite number of generalized dimensions of fractal and strange attractors. Physica D, 8, 435–444.

A. N. Kravchenko , C. W. Boast & D. G. Bullock (1999). Multifractal analysis of soil spatial variability. Agronomy Journal, 91, 1033–1041.

Kropp, J., von Bloh, W., Block, A., Klenke, Th. & Schellnhuber, H.-J. (1994). Characteristic multifractal element distributions in recent bioactive marine sediments. In Fractals and Dynamic Systems in Geosciences, ed. J. H. Kruhl . Berlin: Springer, pp. 369–375.

W. E. Kunin (1998). Extrapolating species abundance across spatial scales. Science, 281, 1513–1515.

J. J. Lennon , W. E. Kunin & S. Hartley (2002). Fractal species distributions do not produce power-law species-area relationships. Oikos, 97, 378–386.

B. B. Mandelbrot (1974). Intermittent turbulence in self similar cascades: divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62, 331–358.

B. B. Mandelbrot (1989). Multifractal measures, especially for the geophysicist. Pure Applied Geophysics, 131, 5–42.

S. C. Manrubia & R. V. Solé (1996). Self-organized criticality in rainforest dynamics. Chaos, Solutions and Fractals, 7, 523–541.

R. Margalef (1996). Information and uncertainty in living systems, a view from ecology. BioSystems, 38, 141–146.

P. A. Marquet , R. A. Quiñones , S. Abades et al. (2005). Scaling and power-laws in ecological systems. The Journal of Experimental Biology, 208, 1749–1769.

B. J. McGill (2003). A test of the unified neutral theory of biodiversity. Nature, 422, 881–884.

B. T. Milne (1998). Motivation and beliefs of complex system approaches in ecology. Ecosystems, 1, 449–456.

S. Nee , A. F. Read , J. J. D. Greenwood & P. H. Harvey (1991). The relationship between abundance and body size in British birds. Nature, 351, 312–313.

M. Pascual , F. A. Ascioti & H. Caswell (1995). Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability. Journal of Plankton Research, 17, 1209–1232.

A. N. D. Posadas , D. Giménez , M. Bittelli , C. M. P. Vaz & M. Flury (2001). Multifractal characterization of soil particle-size distributions. Soil Science Society America Journal, 65, 1361–1367.

A. Rényi (1955). On a new axiomatic theory of probability. Acta Mathematica Hungarica, 6, 285–335.

M. L. Rosenzweig (1995). Species Diversity in Space and Time. Cambridge, UK: Cambridge University Press.

Schmid, P. E. (1997). Stochasticity in resource utilization by a larval Chironomidae (Diptera) community in the bed sediments of a gravel stream. In Groundwater/Surfacewater Ecotones: Biological and Hydrological Interactions and Management Options, ed. J. Gilbert , J. Mathieu & F. Fournier . Cambridge: Cambridge University Press, pp. 21–29.

P. E. Schmid (2000). The fractal properties of habitat and patch structure in benthic ecosystems. Advances in Ecological Research, 30, 339–401.

P. E. Schmid & J. M. Schmid-Araya (1997). Predation on meiobenthic assemblages: resource use of a tanypod guild (Chironomidae, Diptera) in a gravel stream. Freshwater Biology, 38, 67–91.

F. G. Schmitt & L. Seuront (2001). Multifractal random walk in copepod behavior. Physica A, 301, 375–396.

G. Sugihara (1980). Minimal community structure: an explanation of species abundance patterns. The American Naturalist, 116, 770–787.

H. E. Stanley , L. A. N. Amaral , P. Gopikrishnan et al. (2000). Scale invariance and universality: organising principles in complex systems. Physica A, 281, 60–68.

M Tokeshi (1993). Species abundance patterns and community structure. Advances in Ecological Research, 24, 111–186.

M. Tokeshi (1996). Power fraction: a new explanation of relative abundance patterns in species-rich assemblages. Oikos, 75, 543–550.

D. L. Turcotte (1986). Fractals and fragmentation. Journal of Geophysical Research, 91, 1921–1926.

G. B. West , J. H. Brown & B. J. Enquist (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284, 1677–1679.

E. Abebe & A. Coomans (1995). Fresh-water nematodes of the Galapagos. Hydrobiologia, 299, 1151.

G. Bell (2001). Neutral macroecology. Science, 293, 2413–2418.

U.-G. Berninger , B. J. Finlay & P. Kuuppo-Leinikki (1991). Protozoan control of bacterial abundances in fresh water. Limnology and Oceanography, 36, 139–147.

R. Condit , N. Pitman , E. G. Leigh Jr.et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666–669.

K. F. Darling , C. M. Wade , I. A. Stewart et al. (2000). Molecular evidence for genetic mixing of Arctic and Antarctic planktonic foraminifers. Nature, 405, 43–47.

G. F. Esteban & B. J. Finlay (2003). Cryptic freshwater ciliates in a hypersaline lagoon. Protist, 154, 408–411.

G. F. Esteban & B. J. Finlay (2004). Marine ciliates (Protozoa) in central Spain. Ophelia, 58, 13–22.

G. F. Esteban , B. J. Finlay , J. L. Olmo & P. A. Tyler (2000). Ciliated protozoa from a volcanic crater-lake in Victoria, Australia. Journal of Natural History, 34, 159–189.

G. F. Esteban , B. J. Finlay , N. Charubhun & B. Charubhun (2001). On the geographic distribution of Loxodes rex (Protozoa, Ciliophora) and other alleged endemic species of ciliates. Journal of Zoology, London, 255, 139–143.

G. F. Esteban , K. J. Clarke , J. L. Olmo & B. J. Finlay (2006). Soil protozoa – an intensive study of population dynamics and community structure in an upland grassland. Applied Soil Ecology, 33, 137–151.

T. Fenchel & B. J. Finlay (2003). Is microbial diversity fundamentally different from biodiversity of larger animals and plants? European Journal of Protistology, 39, 486–490.

T. Fenchel & B. J. Finlay (2004). The ubiquity of small species: patterns of local and global diversity. Bioscience, 54, 777–784.

T. Fenchel , G. F. Esteban & B. J. Finlay (1997). Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos, 80, 220–225.

B. J. Finlay (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063.

B. J. Finlay & K. J. Clarke (1999a). Ubiquitous dispersal of microbial species. Nature, 400, 828.

B. J. Finlay & K. J. Clarke (1999b). Apparent global ubiquity of species in the protist genus Paraphysomonas. Protist, 150, 419–430.

B. J. Finlay & T. Fenchel (2001). Protozoan community structure in a fractal soil environment. Protist, 152, 203–218.

B. J. Finlay & T. Fenchel (2004). Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist, 155, 237–244.

B. J. Finlay , G. F. Esteban & T. Fenchel (1996a). Global diversity and body size. Nature, 383, 132–133.

B. J. Finlay , J. O. Corliss , G. Esteban & T. Fenchel (1996b). Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. The Quarterly Review of Biology, 71, 221–237.

B. J. Finlay , G. F. Esteban & T. Fenchel (1998). Protozoan diversity: converging estimates of the global number of free-living ciliate species. Protist, 149, 29–37.

B. J. Finlay , G. F. Esteban , J. L. Olmo & P. A. Tyler (1999). Global distribution of free-living microbial species. Ecography, 22, 138–144.

B. J. Finlay H. I. J. Black , S. Brown et al. (2000). Estimating the growth of the soil protozoan community. Protist, 151, 69–80 (and Corrigendum: Protist, 151, 367).

B. J. Finlay , G. F. Esteban , K. J. Clarke & J. L. Olmo (2001). Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales. Protist, 152, 355–366.

B. J. Finlay , E. B. Monaghan & S. C. Maberly (2002). Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist, 153, 261–273.

B. J. Finlay , G. F. Esteban & T. Fenchel (2004). Protist diversity is different? Protist, 155, 15–22.

W. Foissner (1999). Protist diversity: estimates of the near imponderable. Protist, 150, 363–368.

F. O. Glöckner E. Zaichikov , N. Belkova et al. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology, 66, 5053–5065.

T. Goodey (1915). Notes on the remarkable retention of vitality by Protozoa from old stored soils. Annals of Applied Biology, 1, 395–399.

J. L. Green , A. J. Holmes , M. Westoby et al. (2004). Spatial scaling of microbial eukaryote diversity. Nature, 432, 747–750.

Å. Hagström , J. Pinhassi & U. L. Zweifel (2000). Biogeographical diversity among marine bacterioplankton. Aquatic Microbial Ecology, 21, 231–244.

H. Hillebrand & A. I. Azovsky (2001). Body size determines the strength of the latitudinal diversity gradient. Ecography, 24, 251–256.

M. C. Horner-Devine , M. Lage , J. B. Hughes & J. M. Bohannan (2004). A taxa-area relationship for bacteria. Nature, 432, 750–753.

J. H. Lawton (1998). Small is beautiful, and very strange. Oikos, 81, 3–5.

W. J. Lee & D. J. Patterson (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34, 483–562.

D. G. Mann & S. J. M. Droop (1996). Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 336, 19–32.

R. Massana , E. F. DeLong & C. Pedrós-Alió (2000). A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Applied and Environmental Microbiology, 66, 1777–1787.

R. M. May (1988). How many species are there on Earth? Science, 241, 1441–1449.

J. R. Nilsson (1962). Observations on Neobursaridium gigas Balech, 1941 (Ciliata, Heterotrichida). Journal of Protozoology, 9, 273–276.

A. M. Noguez , H. Y. Arita , A. E. Escalante et al. (2005). Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Global Ecology and Biogeography, 14, 241–248.

M. G. Potapova & D. F. Charles (2002). Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography, 29, 167–187.

R. J. Shiel & J. D. Green (1996). Rotifera recorded from New Zealand, 1859–1995, with comments on zoogeography. New Zealand Journal of Zoology, 23, 193–209.

J. Soinen , R. Paavola & T. Muotka (2004). Benthic diatom communities in boreal sreams: community structure in relation to environmental and spatial gradients. Ecography, 27, 330–342.

P. A. Tyler (1996). Endemism in freshwater algae. Hydrobiologia, 336, 127–135.

N. Wilbert & D. Kahan (1981). Ciliates of Solar Lake on the Red Sea shore. Archiv für Protistenkunde, 124, 70–95.