Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-17T23:35:12.638Z Has data issue: false hasContentIssue false

5 - Loss sources and loss accounting

Published online by Cambridge University Press:  14 January 2010

E. M. Greitzer
Affiliation:
Massachusetts Institute of Technology
C. S. Tan
Affiliation:
Massachusetts Institute of Technology
M. B. Graf
Affiliation:
Mars & Co
Get access

Summary

Introduction

Efficiency can be the most important parameter for many fluid machines and characterizing the losses which determine the efficiency is a critical aspect in the analysis of these devices. This chapter describes basic mechanisms for loss creation in fluid flows, defines the different measures developed for assessing loss, and examines their applicability in various situations.

In external aerodynamics, drag on an aircraft or vehicle is most frequently the measure of performance loss. The product of drag and forward velocity represents the power that has to be supplied to drive the vehicle. Defining drag, however, requires defining the direction in which it acts and determining the power expended requires specification of an appropriate velocity. The choice of direction is clear for most external flows but it is less evident in internal flows. Within gas turbine engines, for example, there are situations in which viscous forces can be nearly perpendicular to the mean stream direction or in which the mean stream direction changes by as much as 180°, as in a reverse flow combustor. There is also some ambiguity in the choice of an appropriate reference velocity for power input, even in simple internal flow configurations such as nozzles or diffusers where the velocity changes from inlet to outlet.

Because of this, the most useful indicator of performance loss and inefficiency in internal flows is the entropy generated due to irreversibility. The arguments that underpin this statement are presented in the first part of the chapter to illustrate quantitatively the connection between entropy rise andwork lost through an irreversible process.

Type
Chapter
Information
Internal Flow
Concepts and Applications
, pp. 217 - 278
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×