Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-17T23:18:12.542Z Has data issue: false hasContentIssue false

7 - Flow in rotating passages

Published online by Cambridge University Press:  14 January 2010

E. M. Greitzer
Affiliation:
Massachusetts Institute of Technology
C. S. Tan
Affiliation:
Massachusetts Institute of Technology
M. B. Graf
Affiliation:
Mars & Co
Get access

Summary

Introduction

In the analysis of fluid machinery behavior, it is often advantageous to view the flow from a coordinate system fixed to the rotating parts. Adopting such a coordinate system allows one to work with fluid motions which are steady, but there is a price to be paid because the rotating system is not inertial. In an inertial coordinate system, Newton's laws are applicable and the acceleration on a particle of mass m is directly related to the vector sum of forces through F = ma. In a rotating coordinate system, the perceived accelerations also include the Coriolis and centrifugal accelerations which must be accounted for if we wish to write Newton's second law with reference to the rotating system.

In this chapter we examine flows in rotating passages (ducts, pipes, diffusers, and nozzles). These typically operate in a regime where rotation has an effect on device performance but does not dominate the behavior to the extent found in the geophysical applications which are considered in much of the literature (e.g. Greenspan (1968)). The objectives are to develop criteria for when phenomena associated with rotation are likely to be important and to illustrate the influence of rotation on overall flow patterns. A derivation of the equations of motion in a rotating frame of reference is first presented to show the origin of the Coriolis and centrifugal accelerations, with illustrations provided of the differences between flow as seen in fixed (often called absolute) and rotating (often called relative) systems. Quantities that are conserved in a steady rotating flow are then discussed, because these find frequent use in fluid machinery.

Type
Chapter
Information
Internal Flow
Concepts and Applications
, pp. 347 - 388
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×