Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T10:58:38.393Z Has data issue: false hasContentIssue false

9 - Image processing methods using ICA mixture models

Published online by Cambridge University Press:  05 July 2014

T. W. Lee
Affiliation:
Usa
M.S. Lewicki
Affiliation:
Usa
Stephen Roberts
Affiliation:
University of Oxford
Richard Everson
Affiliation:
University of Exeter
Get access

Summary

An unsupervised classification algorithm is derived by modelling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent, non-Gaussian densities. The algorithm estimates the density of each class and is able to model class distributions with non-Gaussian structure. It can improve classification accuracy compared with standard Gaussian mixture models. When applied to images, the algorithm can learn efficient codes (basis functions) for images that capture the statistical structure of the images. We applied this method to the problem of unsupervised classification, segmentation and de-noising of images. This method was effective in classifying complex image textures such as trees and rocks in natural scenes. It was also useful for de-noising and filling in missing pixels in images with complex structures. The advantage of this model is that image codes can be learned with increasing numbers of classes thus providing greater flexibility in modelling structure and in finding more image features than in either Gaussian mixture models or standard ICA algorithms.

Introduction

Recently, Blind Source Separation by Independent Component Analysis has been applied to signal processing problems including speech enhancement, telecommunications and medical signal processing. ICA finds a linear non-orthogonal coordinate system in multivariate data determined by second- and higher-order statistics. The goal of ICA is to linearly transform the data in such a way that the transformed variables are as statistically independent from each other as possible [Jutten & Herault, 1991, Comon, 1994, Bell & Sejnowski, 1995, Cardoso & Laheld, 1996, Lee et al., 2000b]. ICA generalizes the technique of Principal Component Analysis (PCA) and, like PCA, has proven a useful tool for finding structure in data.

Type
Chapter
Information
Independent Component Analysis
Principles and Practice
, pp. 234 - 253
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×