Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T20:36:01.079Z Has data issue: false hasContentIssue false

27 - Artificial photosynthesis for solar energy conversion

from Part 3 - Renewable energy sources

Published online by Cambridge University Press:  05 June 2012

Boris Rybtchinski
Affiliation:
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
Michael R. Wasielewski
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, USA
David S. Ginley
Affiliation:
National Renewable Energy Laboratory, Colorado
David Cahen
Affiliation:
Weizmann Institute of Science, Israel
Get access

Summary

Focus

In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical production of solar fuels must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes occur. Although encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering components and the tailored environments necessary to realize a fully functional artificial photosynthetic system.

Synopsis

Previously, researchers used complex, covalent molecular systems comprising chromophores, electron donors, and electron acceptors to mimic both the light-harvesting (antenna) and charge-separation functions of natural photosynthetic arrays. These systems allow one to derive fundamental insights into the dependences of electron-transfer rate constants on donor–acceptor distance and orientation, electronic interaction, and the free energy of the reaction. However, significantly more complex systems are required in order to achieve functions comparable to natural photosynthesis. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. To achieve an artificial photosynthetic system, the resulting structures must provide pathways for the migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular “wires” that can efficiently move electrons and holes between reaction centers and catalytic sites. The central challenge is to develop small, functional building blocks that have the appropriate molecular-recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Venturi, M.Balzani, V.Gandolfi, M. T. 2005
Ciamician, G. 1912 “The photochemistry of the future,”Science 36 385CrossRefGoogle Scholar
Calvin, M. 1987 “Artificial photosynthesis,”J. Membrane Sci. 33 137CrossRefGoogle Scholar
Katz, J. J.Wasielewski, M. R. 1978 “Biomimetic approaches to artificial photosynthesis,”Biotechnol. Bioeng. Symp. 8 433Google Scholar
Blankenship, R. E. 2002 Molecular Mechanisms of PhotosynthesisOxfordBlackwell ScienceCrossRefGoogle Scholar
Dry, M. E. 2001 “High quality diesel via the Fischer–Tropsch process – a review,”J. Chem. Tech. Biotech. 77 43CrossRefGoogle Scholar
Dry, M. E. 2002 “The Fischer–Tropsch process: 1950–2000,”Catal. Today 72 227CrossRefGoogle Scholar
Dry, M. E. 1996 “Practical and theoretical aspects of the catalytic Fischer–Tropsch process,”Appl. Catal. A 138 319CrossRefGoogle Scholar
Shadle, L. J.Berry, D. A.Syamlal, M. 2004 “Coal gasification,”Kirk–Othmer Encyclopedia of Chemical Technology 6 771Google Scholar
Twigg, M. V.Spencer, M. S. 2001 “Deactivation of supported copper metal catalysts for hydrogenation reactions,”Appl. Catal. A 212 161CrossRefGoogle Scholar
Baiker, A. 2000 “Utilization of carbon dioxide in heterogeneous catalytic synthesis,”Appl. Organometall. Chem. 14 7513.0.CO;2-J>CrossRefGoogle Scholar
Alstrum-Acevedo, J. H.Brennaman, M. K.Meyer, T. J. 2005 “Chemical approaches to artificial photosynthesis,” 2Inorg. Chem. 44 6802CrossRefGoogle ScholarPubMed
Benson, E. E.Kubiak, C. P.Sathrum, A. J.Smieja, J. M. 2009 “Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels,”Chem. Soc. Rev. 38 89CrossRefGoogle Scholar
Kanan, M. W.Nocera, D. G. 2008 “ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+,”Science 321 1072CrossRefGoogle Scholar
Dinca, M.Surendranath, Y.Nocera, D. G. 2010 “Nickel-borate oxygen-evolving catalyst that functions under benign conditions,”Proc. Natl. Acad. Sci. 107 10337CrossRefGoogle Scholar
Fujishima, A.Honda, K. 1972 “Electrochemical photolysis of water at a semiconductor electrode,”Nature 238 37CrossRefGoogle Scholar
Zou, Z. G.Ye, J. H.Sayama, K.Arakawa, H. 2001 “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,”Nature 414 625CrossRefGoogle Scholar
Maeda, K.Teramura, K.Lu, D. L. 2006 “Photocatalyst releasing hydrogen from water – enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight,”Nature 440 295CrossRefGoogle Scholar
Khaselev, O.Turner, J. A. 1998 “A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting,”Science 280 425CrossRefGoogle Scholar
Youngblood, W. J.Lee, S.-H. A.Maeda, K.Mallouk, T. E. 2009 “Visible light water splitting using dye-sensitized oxide semiconductors,”Acc. Chem. Res. 42 1966CrossRefGoogle Scholar
McDermott, G.Prince, S. M.Freer, A. A. 1995 “Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria,”Nature 374 517CrossRefGoogle Scholar
Rucareanu, S.Schuwey, A.Gossauer, A. 2006 “One-step template-directed synthesis of a macrocyclic tetraarylporphyrin hexamer based on supramolecular interactions with a C3-symmetric tetraarylporphyrin trimer,”J. Am. Chem. Soc. 128 3396CrossRefGoogle Scholar
Shoji, O.Tanaka, H.Kawai, T.Kobuke, Y. 2005 “Single molecule visualization of coordination-assembled porphyrin macrocycles reinforced with covalent linkings,”J. Am. Chem. Soc. 127 8598CrossRefGoogle Scholar
Nakamura, Y.Hwang, I.-W.Aratani, N. 2005 “Directly linked porphyrin rings: synthesis, characterization, and efficient excitation energy hopping,”J. Am. Chem. Soc. 127 236CrossRefGoogle Scholar
Li, J.Ambroise, A.Yang, S. I. 1999 “Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel of porphyrins,”J. Am. Chem. Soc. 121 8927CrossRefGoogle Scholar
Kelley, R. F.Tauber, M. J.Wasielewski, M. R. 2006 “Intramolecular electron transfer through the 20-position of a chlorophyll derivative: an unexpectedly efficient conduit for charge transport,”J. Am. Chem. Soc. 128 4779CrossRefGoogle Scholar
Gunderson, V. L.Wilson, T. M.Wasielewski, M. R. 2009 “Excitation energy transfer pathways in asymmetric covalent chlorophyll tetramers,”J. Phys. Chem. C 113 11936CrossRefGoogle Scholar
Kelley, R. F.Goldsmith, R. H.Wasielewski, M. R. 2007 “Ultrafast energy transfer within cyclic self-assembled chlorophyll tetramers,”J. Am. Chem. Soc. 129 6384CrossRefGoogle Scholar
Gunderson, V. L.Mickley Conron, S. M.Wasielewski, M. R. 2010 “Self-assembly of a hexagonal supramolecular light-harvesting array from chlorophyll a trefoil building blocks,”Chem. Commun. 46 401CrossRefGoogle Scholar
Kelley, R. F.Lee, S. J.Wilson, T. M. 2008 “Intramolecular energy transfer within butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms,”J. Am. Chem. Soc. 130 4277CrossRefGoogle Scholar
Muthukumaran, K.Loewe, R. S.Kirmaier, C. 2003 “Synthesis and excited-state photodynamics of a perylene-monoimide-oxochlorin dyad. A light-harvesting array,”J. Phys. Chem. B 107 3431CrossRefGoogle Scholar
Miller, S. E.Zhao, Y.Schaller, R. 2002 “Ultrafast electron transfer reactions initiated by excited CT states of push–pull perylenes,”Chem. Phys. 275 167CrossRefGoogle Scholar
Gregg, B. A.Cormier, R. A. 2001 “Doping molecular semiconductors: n-type doping of a liquid crystal perylene diimide,”J. Am. Chem. Soc. 123 7959CrossRefGoogle Scholar
Neuteboom, E. E.Beckers, E. H. A.Meskers, S. C. J.Meijer, E. W.Janssen, R. A. J. 2003 “Singlet-energy transfer in quadruple hydrogen-bonded oligo(-phenylenevinylene)perylene-diimide dyads,”Org. Biomol. Chem. 1 198CrossRefGoogle Scholar
Tang, C. W. 1986 “Two-layer organic photovoltaic cell,”App. Phys. Lett. 48 183CrossRefGoogle Scholar
Würthner, F.Thalacker, C.Sautter, A. 1999 “Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and ı–ı interactions,”Adv. Mater. 11 7543.0.CO;2-5>CrossRefGoogle Scholar
Schenning, A. P. H. J.van Herrikhuyzen, J.Jonkheijm, P. 2002 “Photoinduced electron transfer in hydrogen-bonded oligo(-phenylene vinylene)-perylene bisimide chiral assemblies,”J. Am. Chem. Soc. 124 10252CrossRefGoogle Scholar
Zhao, Y.Wasielewski, M. R. 1999 “3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors,”Tetrahedron Lett. 40 7047CrossRefGoogle Scholar
Giaimo, J. M.Gusev, A. V.Wasielewski, M. R. 2002 “Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation,”J. Am. Chem. Soc. 124 8530CrossRefGoogle Scholar
Rybtchinski, B.Sinks, L. E.Wasielewski, M. R. 2004 “Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores,”J. Am. Chem. Soc. 126 12268CrossRefGoogle Scholar
Bullock, J. E.Carmieli, R.Mickley, S. M.Vura-Weis, J.Wasielewski, M. R. 2009 “Photoinitiated charge transport through pi-Stacked electron conduits in supramolecular ordered assemblies of donor–acceptor triads,”J. Am. Chem. Soc. 131 11919CrossRefGoogle Scholar
Gust, D.Moore, T. A.Moore, A. L. 2001 “Mimicking photosynthetic solar energy transduction,”Acc. Chem. Res. 34 40CrossRefGoogle Scholar
Ferreira, K. N.Iverson, T. M.Maghlaoui, K.Barber, J.Iwata, S. 2004 “Architecture of the photosynthetic oxygen-evolving center,”Science 303 1831CrossRefGoogle Scholar
Cady, C. W.Crabtree, R. H.Brudvig, G. W. 2008 “Functional models for the oxygen-evolving complex of photosystem II,”Coord. Chem. Rev. 252 444CrossRefGoogle Scholar
McEvoy, J. P.Brudvig, G. W. 2006 “Water-splitting chemistry of photosystem II,”Chem. Rev. 106 4455CrossRefGoogle Scholar
Limburg, J.Vrettos, J. S.Liable-Sands, L. M. 1999 “A functional model for O—O bond formation by the O2-evolving complex in photosystem II,”Science 283 1524CrossRefGoogle Scholar
Magnuson, A.Anderlund, M.Johansson, O. 2009 “Biomimetic and microbial approaches to solar fuel generation,”Acc. Chem. Res. 42 1899CrossRefGoogle Scholar
Kanan, M. W.Surendranath, Y.Nocera, D. G. 2009 “Cobalt–phosphate oxygen-evolving compound,”Chem. Soc. Rev. 38 109CrossRefGoogle Scholar
Lubitz, W.Tumas, W. 2007 “Hydrogen: an overview,”Chem. Rev. 107 3900CrossRefGoogle Scholar
Cammack, R. 1999 “Hydrogenase sophistication,”Nature 397 214CrossRefGoogle Scholar
Tye, J. W.Hall, M. B.Darensbourg, M. Y. 2005 “Better than platinum? Fuels cells energized by enzymes,”Proc. Natl. Acad. Sci. 102 16911CrossRefGoogle Scholar
Nicolet, Y.Piras, C.Legrand, P. 1999 “ iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center,”Structure 7 13CrossRefGoogle Scholar
Peters, J. W.Lanzilotta, W. N.Lemon, B. J.Seefeldt, L. C. 1998 “X-ray crystal structure of the Fe-only hydrogenase (CpI) from to 1.8 angstrom resolution,”Science 282 1853CrossRefGoogle Scholar
Gloaguen, F.Rauchfuss, T. B. 2009 “Small molecule mimics of hydrogenases: hydrides and redox,”Chem. Soc. Rev. 38 100CrossRefGoogle Scholar
Tard, C.Pickett, C. J. 2009 “Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases,”Chem. Rev. 109 2245CrossRefGoogle Scholar
Wang, M.Na, Y.Gorlov, M.Sun, L. 2009
Sun, L.Åkermark, B.Ott, S. 2005 “Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production,”Coord. Chem. Rev. 249 1653CrossRefGoogle Scholar
Na, Y.Pan, J.Wang, M.Sun, L. 2007 “Intermolecular electron transfer from photogenerated Ru(bpy)3+ to [2Fe2S] model complexes of the iron-only hydrogenase active site,”Inorg. Chem. 46 3813CrossRefGoogle Scholar
Na, Y.Wang, M.Pan, J. 2008 “Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes,”Inorg. Chem. 47 2805CrossRefGoogle Scholar
Li, X.Wang, M.Zhang, S. 2008 “Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: photo-induced electron transfer and hydrogen generation,”J. Phys. Chem. B 112 8198CrossRefGoogle Scholar
Samuel, A. P. S.Co, D. T.Stern, C. L.Wasielewski, M. R. 2010 “Ultrafast photodriven intramolecular electron transfer from a zinc porphyrin to a readily reduced diiron hydrogenase model complex,”J. Am. Chem. Soc. 132 8813CrossRefGoogle Scholar
Kohl, S. W.Weiner, L.Schwartsburd, L. 2009 “Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex,”Science 324 74CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×