from Part 3 - Renewable energy sources
Published online by Cambridge University Press: 05 June 2012
Focus
In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical production of solar fuels must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes occur. Although encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering components and the tailored environments necessary to realize a fully functional artificial photosynthetic system.
Synopsis
Previously, researchers used complex, covalent molecular systems comprising chromophores, electron donors, and electron acceptors to mimic both the light-harvesting (antenna) and charge-separation functions of natural photosynthetic arrays. These systems allow one to derive fundamental insights into the dependences of electron-transfer rate constants on donor–acceptor distance and orientation, electronic interaction, and the free energy of the reaction. However, significantly more complex systems are required in order to achieve functions comparable to natural photosynthesis. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. To achieve an artificial photosynthetic system, the resulting structures must provide pathways for the migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular “wires” that can efficiently move electrons and holes between reaction centers and catalytic sites. The central challenge is to develop small, functional building blocks that have the appropriate molecular-recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.