Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-27T08:56:41.822Z Has data issue: false hasContentIssue false

10 - Glycolysis

from PART III - METABOLISM

Published online by Cambridge University Press:  05 August 2012

Bernhard Ø. Palsson
Affiliation:
University of California, San Diego
Get access

Summary

Glycolysis is a central metabolic pathway. In this chapter, we formulate a MASS model of the glycolytic pathway. In doing so, we detail the process that goes into formulating, characterizing, and validating a simulation model of a single pathway. First, we define the pathway, or, more accurately stated, the system that is to be studied and characterized through dynamic simulation. Such a definition includes the internal reactions, the systems boundary, and the exchange fluxes. The stoichiometric matrix is then constructed and quality controlled, and its properties studied. The contents of the null spaces give us information about the pathway and pool structure of the defined system. The steady state is deduced through the specification of a minimum number of fluxes. The steady-state concentrations are then specified and the mass action kinetic constants are evaluated. Finally, the functional pooling structure and corresponding property ratios are formulated using biochemical rationale. The dynamic responses of glycolysis as a system can then be simulated and interpreted through the pooling structure. As in Chapter 8, we focus on the response to an increase in the rate of ATP utilization. With the formulated glycolytic MASS model, the reader can simulate and study responses to other perturbations.

Glycolysis as a system

Defining the system The glycolytic pathway degrades glucose (a six-carbon compound) to form pyruvate or lactate (three-carbon compounds) as end products.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Glycolysis
  • Bernhard Ø. Palsson, University of California, San Diego
  • Book: Systems Biology: Simulation of Dynamic Network States
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736179.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Glycolysis
  • Bernhard Ø. Palsson, University of California, San Diego
  • Book: Systems Biology: Simulation of Dynamic Network States
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736179.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Glycolysis
  • Bernhard Ø. Palsson, University of California, San Diego
  • Book: Systems Biology: Simulation of Dynamic Network States
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736179.014
Available formats
×