Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T16:33:28.548Z Has data issue: false hasContentIssue false

11 - Coupling pathways

from PART III - METABOLISM

Published online by Cambridge University Press:  05 August 2012

Bernhard Ø. Palsson
Affiliation:
University of California, San Diego
Get access

Summary

In Chapter 10 we formulated a MASS model of glycolysis. We took a linear pathway and converted it into an open system with defined inputs and outputs, formed the dynamic mass balances, and then simulated its response to increased rate of energy use. In this chapter, we will show how one can build a dynamic simulation model for two coupled pathways that is based on an integrated stoichiometric scaffold for the two pathways. We start with the pentose pathway and then couple it to the glycolytic model from Chapter 10 to form a simulation model of two pathways to study their simultaneous dynamic responses.

The pentose pathway

The pentose pathway originates from G6P in glycolysis (Figure 11.1). The pathway is typically thought of as being comprised of two parts: the oxidative and the nonoxidative branches.

The oxidative branch G6P undergoes two oxidation steps, including decarboxylation, releasing CO2, leading to the formation of one pentose and two NADPH molecules. These reactions are called the oxidative branch of the pentose pathway. The branch forms two NADPH molecules that are used to form glutathione (GSH) from an oxidized dimeric state, GSSG, by breaking a disulfite bond. GSH and GSSG are present in high concentrations, and thus buffer the NADPH redox charge (recall the discussion of the creatine phosphate buffer in Chapter 8). The pentose formed, R5P, can be used for biosynthesis. We will discuss the connection of R5P with the salvage pathways in Chapter 12.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Coupling pathways
  • Bernhard Ø. Palsson, University of California, San Diego
  • Book: Systems Biology: Simulation of Dynamic Network States
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736179.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Coupling pathways
  • Bernhard Ø. Palsson, University of California, San Diego
  • Book: Systems Biology: Simulation of Dynamic Network States
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736179.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Coupling pathways
  • Bernhard Ø. Palsson, University of California, San Diego
  • Book: Systems Biology: Simulation of Dynamic Network States
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736179.015
Available formats
×