Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T06:27:20.267Z Has data issue: false hasContentIssue false

26 - Perceiving-the-present and a unifying theory of illusions

from Part IV - Spatial phenomena: forward shift effects

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Introduction

Accurately perceiving where objects are in one's visual field is important for making decisions and interacting with the environment, but the visual system must contend with a significant delay – on the order of 100 msec (Lennie 1981; Maunsell & Gibson 1992; Schmolesky et al. 1998) – between the time of retinal stimulation and the time of the elicited percept. To deal with this delay, it has been hypothesized that the visual system has been selected to attempt to generate a percept that compensates for it, so as to perceive the present (Ramachandran & Anstis 1990; De Valois and De Valois 1991; Nijhawan 1994, 1997, 2001, 2002; Berry et al. 1999; Schlag et al. 2000; Sheth et al. 2000; Khurana et al. 2000; Changizi 2001, 2003, 2009; Changizi & Widders 2002). One circumstance where perceiving the present is crucial is when an observer is moving forward and approaching objects. It has been proposed that the classical geometrical illusion stimuli are due to fixations during forward motion and that the illusions are an expected consequence of perceiving the present mechanisms; that is, the classical geometrical stimuli are perceived not as they actually project but as they would project in the next moment if the observer were moving forward (Changizi 2001, 2003; Changizi & Widders 2002). This theory has been used to explain geometrical illusions such as the Hering, Orbison (Ehrenstein), Ponzo, Muller-Lyer, and Poggendorf.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angell, R. B. (1974). The geometry of visibles. Noûs 8: 87–117.CrossRefGoogle Scholar
Ansbacher, H. L. (1944). Distortion in the perception of real movement. J Exp Psychol 34: 1–23.CrossRefGoogle Scholar
Anstis, S. (1989). Kinetic edges become displaced, segregated, and invisible. In D. M.-K., Lam & C. D., Gilbert (eds.), Neural Mechanisms of Visual Perception (247–260). The Woodlands, TX: Portfolia.Google Scholar
Anstis, S. M., Howard, I. P., & Rogers, B. (1978). A Craik-O'Brien-Cornsweet illusion for visual depth. Vision Res 18: 213–217.CrossRefGoogle ScholarPubMed
Arend, L. E., & Goldstein, R. (1990). Lightness and brightness over spatial illumination gradients. J Opt Soc Am A 7: 1929–1936.CrossRefGoogle ScholarPubMed
Baird, J. C. (1968). Toward a theory of frontal-size judgments. Percept Psychophys 4: 49–53.CrossRefGoogle Scholar
Berliner, A., & Berliner, S. (1948). The distortion of straight and curved lines in geometrical fields. Am J Psychol 61: 153–166.CrossRefGoogle ScholarPubMed
Berry, M. J. II, Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.CrossRefGoogle ScholarPubMed
Biersdorf, W. R., Ohwaki, S., & Kozil, D. J. (1963). The effect of instructions and oculomotor adjustments on apparent size. Am J Psychol 76: 1–17.CrossRefGoogle ScholarPubMed
Blakemore, M. R., & Snowden, R. J. (1999). The effect of contrast upon perceived speed: a general phenomenon? Perception 28: 33–48.CrossRefGoogle ScholarPubMed
Boring, E. G. (1943). The moon illusion. Am J Phys 11: 55–60.CrossRefGoogle Scholar
Boring, E. G. (1962). On the moon illusion – a letter. Science 137: 902–906.Google Scholar
Brookes, A., & Stevens, K. A. (1989). The analogy between stereo depth and brightness. Perception 18: 601–614.CrossRefGoogle ScholarPubMed
Brooks, K. (2001). Stereomotion speed perception is contrast dependent. Perception 30: 725–731.CrossRefGoogle ScholarPubMed
Brooks, K., & Mather, G. (2000). Perceived speed of motion in depth is reduced in the periphery. Vision Res 40: 3507–3516.CrossRefGoogle ScholarPubMed
Brown, J. F. (1931). The visual perception of velocity. Psychologische Forschung 14: 199–232.CrossRefGoogle Scholar
Burbeck, C. A. (1987). Locus of spatial-frequency discrimination. J Opt Soc Am A 4: 1807–1813.CrossRefGoogle ScholarPubMed
Burr, D. (2000). Motion vision: are “speed lines” used in human visual motion? Curr Biol 10: R440–R443.CrossRefGoogle Scholar
Burr, D. C., & Ross, J. (2002). Direct evidence that “speedlines” influence motion mechanisms. J Neurosci 22: 8661–8664.CrossRefGoogle ScholarPubMed
Campbell, F. W., & Maffei, L. (1981). The influence of spatial frequency and contrast on the perception of moving patterns. Vision Res 21: 713–721.CrossRefGoogle Scholar
Cannon, M. W., & Fullenkamp, S. C. (1991). Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Res 31: 1985–1998.CrossRefGoogle ScholarPubMed
Cannon, M. W. Jr., & Fullenkamp, S. C. (1993). Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects. Vision Res 33: 1685–1695.CrossRefGoogle ScholarPubMed
Carlson, V. R. (1960). Overestimation in size-constancy judgments. Am J Psychol 73: 199–213.CrossRefGoogle Scholar
Carlson, V. R. (1962). Size-constancy judgments and perceptual compromise. J Exp Psychol 63: 68–73.CrossRefGoogle ScholarPubMed
Cesàro, A. L., & Agostini, T. (1998). The trajectory of a dot crossing a pattern of tilted lines is misperceived. Percept Psychophys 60: 518–523.CrossRefGoogle Scholar
Changizi, M. A. (2001). “Perceiving the present” as a framework for ecological explanations of the misperception of projected angle and angular size. Perception 30: 195–208.CrossRefGoogle Scholar
Changizi, M. A. (2003). The Brain from 25,000 Feet: High Level Explorations of Brain Complexity, Perception, Induction and Vagueness. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Changizi, M. A. (2009). The Vision Revolution. Dallas, TX: Benbella.Google Scholar
Changizi, M. A., & Widders, D. (2002). Latency correction explains the classical geometrical illusions. Perception 31: 1241–1262.CrossRefGoogle ScholarPubMed
Chubb, C., Sperling, G., & Solomon, J. A. (1989). Texture interactions determine perceived contrast. Proc Natl Acad Sci USA 86: 9631–9635.CrossRefGoogle ScholarPubMed
Coren, S., & Girgus, J. S. (1978). Seeing Is Deceiving: The Psychology of Visual Illusions. Hillsdale, NJ: Erlbaum.Google Scholar
Coren, S., Girgus, J. S., Erlichman, H., & Hakstian, A. R. (1976). An empirical taxonomy of visual illusions. Percept Psychophys 20: 129–137.CrossRefGoogle Scholar
Craig, E. J. (1969). Phenomenal geometry. Br J Philos Sci 20: 121–134.CrossRefGoogle Scholar
Cutting, J. E. (2002). Representing motion in a static image: constraints and parallels in art, science, and popular culture. Perception 31: 1165–1194.CrossRefGoogle Scholar
Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distance: the integration, relative potency, and contextual use of different information about depth. In W., Epstein & S., Rogers (eds.), Handbook of Perception and Cognition. Vol. 5: Perception of Space and Motion (69–117). San Diego: Academic Press.Google Scholar
Daniels, N. (1972). Thomas Reid's discovery of a non-euclidean geometry. Philosophy of Science 39: 219–234.CrossRefGoogle Scholar
Davis, E. T. (1990). Modeling shifts in perceived spatial frequency between the fovea and periphery. J Opt Soc Am A 7: 286–296.CrossRefGoogle ScholarPubMed
De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving gabors. Vision Res 31: 1619–1626.CrossRefGoogle ScholarPubMed
De Weert, C. M. M., Snoeren, P. R., & Puts, M. J. H. (1998). Mutual dependence of luminance, size, and disparity in depth, size and luminance discrimination tasks. Perception 27 (suppl.): 111.Google Scholar
Diener, H. C., Wist, E. R., Dichgans, J., & Brandt, T. (1976). The spatial frequency effect on perceived velocity. Vision Res 16: 169–176.CrossRefGoogle ScholarPubMed
Dworkin, L. (1997). The effects of brightness contrast and stimulus presentation and duration on the magnitude of the Oppel-Kundt illusion. Unpublished thesis, Department of Psychology, Concordia University.
Edwards, M., & Badcock, D. R. (2003). Motion distorts perceived depth. Vision Res 43: 1799–1804.CrossRefGoogle ScholarPubMed
Ehrenstein, W. (1925). Versuche ueber die Beziehungen zwischen Bewegungs- und Gestaltwahrnehmung. (Experiments on the relationships between the perception of motion and of gestalt). Zeitschrift fuer Psychologie 96: 305–352.Google Scholar
Ejima, Y., & Takahashi, S. (1985). Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Res 25: 1223–1232.CrossRefGoogle ScholarPubMed
Enright, J. T. (1989). Manipulating stereopsis and vergence in an outdoor setting: moon, sky and horizon. Vision Res 29: 1815–1824.CrossRefGoogle Scholar
Epstein, W., Park, J., & Casey, A. (1961). The current status of the size-distance hypothesis. Psychol Bull 58: 491–514.CrossRefGoogle Scholar
Farnè, M. (1972). Studies on induced motion in the third dimension. Perception 1: 351–357.CrossRefGoogle ScholarPubMed
Farnè, M. (1977). Motion in depth induced by brightness changes in the background. Perception 6: 295–297.CrossRefGoogle ScholarPubMed
Foley, J. M. (1972). The size-distance relation and intrinsic geometry of visual space: implications for processing. Vision Res 12: 323–332.CrossRefGoogle ScholarPubMed
Foster, C., & Altschuler, E. L. (2001). The bulging grid. Perception 30: 393–395.CrossRefGoogle Scholar
Gegenfurtner, K. R., & Hawken, M. J. (1996). Perceived velocity of luminance, chromatic and non-fourier stimuli: influence of contrast and temporal frequency. Vision Res 36: 1281–1290.CrossRefGoogle ScholarPubMed
Geisler, W. S. (1999). Motion streaks provide a spatial code for motion direction. Nature 400: 65–69.CrossRefGoogle ScholarPubMed
Geisler, W. S., Albrecht, D. G., Crane, A. M., & Stern, L. (2001). Motion direction signals in the primary visual cortex of cat and monkey. Vis Neurosci 18: 501–516.CrossRefGoogle ScholarPubMed
Gelb, D. J., & Wilson, H. R. (1983). Shifts in perceived size as a function of contrast and temporal modulation. Vision Res 23: 71–82.CrossRefGoogle ScholarPubMed
Georgeson, M. A. (1980). Spatial frequency analysis in early visual processing. Philos Trans R Soc Lond B Biol Sci 290: 11–22.CrossRefGoogle ScholarPubMed
Georgeson, M. A. (1991). Contrast overconstancy. J Opt Soc Am A 8: 579–586.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1950). The Perception of the Visual World. Boston: Houghton Mifflin.Google Scholar
Gilinsky, A. S. (1955). The effect of attitude upon the perception of size. Am J Psychol 68: 173–192.CrossRefGoogle ScholarPubMed
Gillam, B. J. (1998). Illusions at century's end. In J., Hochberg (ed.), Perception and Cognition at Century's End (98–137). San Diego: Academic Press.Google Scholar
Gogel, W. C., & Eby, D. W. (1997). Measures of perceived linear size, sagittal motion, and visual angle from optical expansions and contractions. Percept Psychophys 59: 783–806.CrossRefGoogle ScholarPubMed
Gogel, W. C., & McNulty, P. (1983). Perceived velocity as a function of reference mark density. Scand J Psychol 24: 257–265.CrossRefGoogle ScholarPubMed
Gregory, R. (2005). The Medawar Lecture 2001: knowledge for vision, vision for knowledge. Philos Trans R Soc Lond B Biol Sci 360: 1231–1251.CrossRefGoogle ScholarPubMed
Harker, G. S. (1962). Apparent frontoparallel plane, stereoscopic correspondence, and induced cyclotorsion of the eyes. Percept Mot Skills 14: 75–87.CrossRefGoogle Scholar
Hawken, M. J., Gegenfurtner, K. R., & Tang, C. (1994). Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367: 268–270.CrossRefGoogle ScholarPubMed
Heinemann, E. G., Tulving, E., & Nachmias, J. (1959). The effect of oculomotor adjustments on apparent size. Am J Psychol 72: 32–45.CrossRefGoogle Scholar
Helson, H. (1963). Studies of anomalous contrast and assimilation. J Opt Soc Am 53: 179–184.CrossRefGoogle ScholarPubMed
Hess, C. V. (1904). Untersuchungen über den Erregungsvorgang in Sehorgan bei Kurzund bei länger dauernder Reizung. Pflügers Arch Gesamte Physiol 101: 226–262.CrossRefGoogle Scholar
James, W. (1950). Principles of Psychology, Vol. II (New York: Dover), originally published 1890.Google Scholar
Jenkin, N., & Hyman, R. (1959). Attitude and distance-estimation as variables in size-matching. Am J Psychol 72: 68–76.CrossRefGoogle Scholar
Johansson, G. (1950). Configurations in the perception of velocity. Acta Psychologica 7: 25–79.CrossRefGoogle Scholar
Jordan, K., & Randall, J. (1987). The effects of framing ratio and oblique length on Ponzo illusion magnitude. Percept Psychophys 41: 435–439.CrossRefGoogle ScholarPubMed
Joynson, R. B. (1949). The problem of size and distance. Q J Exp Psychol 1: 119–135.CrossRefGoogle Scholar
Kaneko, H., & Uchikawa, K. (1993). Apparent relative size and depth of moving objects. Perception 22: 537–547.CrossRefGoogle ScholarPubMed
Kaneko, H., & Uchikawa, K. (1997). Perceived angular and linear size: the role of binocular disparity and visual surround. Perception 26: 17–27.CrossRefGoogle ScholarPubMed
Katz, E., Gizzi, M. S., Cohen, B., & Malach, R. (1990). The perceived speed of object motion varies inversely with distance travelled. Perception 19: 387.Google Scholar
Kaufman, L., & Kaufman, J. H. (2000). Explaining the moon illusion. Proc Natl Acad Sci USA 97: 500–505.CrossRefGoogle ScholarPubMed
Kaufman, L., & Rock, I. (1962). The moon illusion, I. Science 136: 953–961.CrossRefGoogle Scholar
Khurana, B., Watanabe, R., & Nijhawan, R. (2000). The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29: 675–692.CrossRefGoogle ScholarPubMed
Klein, S., Stromeyer, C. F. III, & Ganz, L. (1974). The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings. Vision Res 14: 1421–1432.CrossRefGoogle Scholar
Komoda, M. K., & Ono, H. (1974). Oculomotor adjustments and size-distance perception. Percept Psychophys 15: 353–360.CrossRefGoogle Scholar
Kooi, F. L., De Valois, K. K., Grosof, D. H., & De Valois, R. L. (1992). Properties of the recombination of one-dimensional motion signals into a pattern motion signal. Percept Psychophys 52: 415–424.CrossRefGoogle ScholarPubMed
Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. J Cogn Neurosci 12: 48–55.CrossRefGoogle ScholarPubMed
Krekelberg, B., Dannenberg, S., Hoffmann, K-P., Bremmer, F., & Ross, J. (2003). Neural correlates of implied motion. Nature 424: 674–677.CrossRefGoogle ScholarPubMed
Krekelberg, B., Vatakis, A., & Kourtzi, Z. (2005). Implied motion from form in the human visual cortex. J Neurophysiol 94: 4373–4386.CrossRefGoogle ScholarPubMed
Kulikowski, J. J. (1972). Relation of psychophysics to electrophysiology. Trace, Paris 6: 64–69.Google Scholar
Kulikowski, J. J. (1975). Apparent fineness of briefly presented gratings: balance between movement and pattern channels. Vision Res 15: 673–680.CrossRefGoogle ScholarPubMed
Ledgeway, T., & Smith, A. T. (1995). The perceived speed of second-order motion and its dependence on stimulus contrast. Vision Res 35: 1421–1434.CrossRefGoogle ScholarPubMed
Leibowitz, H., Brislin, R., Perlmutter, L., & Hennessy, R. (1969). Ponzo perspective illusion as a manifestation of space perception. Science 166: 1174–1176.CrossRefGoogle ScholarPubMed
Leibowitz, H. W., & Harvey, L. O. Jr. (1969). Effect of instructions, environment, and type of test object on matched size. J Exp Psychol 81: 36–43.CrossRefGoogle ScholarPubMed
Lennie, P. (1981). The physiological basis of variations in visual latency. Vision Res 21: 815–824.CrossRefGoogle ScholarPubMed
Lewis, C. F., & McBeath, M. K. (2004). Bias to experience approaching motion in a three-dimensional virtual environment. Perception 33: 259–276.CrossRefGoogle Scholar
Lewis, E. O. (1912–1913). The illusion of filled and unfilled space. Br J Psychol 5: 36–50.Google Scholar
Liu, L., & Schor, C. M. (1998). Functional division of the retina and binocular correspondence. J Opt Soc Am A 15: 1740–1755.CrossRefGoogle ScholarPubMed
Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7: 3416–3468.CrossRefGoogle ScholarPubMed
Loomis, J. M., & Nakayama, K. (1973). A velocity analogue of brightness contrast. Perception 2: 425–428.CrossRefGoogle ScholarPubMed
Lucas, J. R. (1969). Euclides ab omni naevo vindicatus. Br J Philos Sci 20: 1–11.CrossRefGoogle Scholar
Mack, A. (1978). Three modes of visual perception. In M. H., Pick & E., Saltzman (eds.), Modes of Perceiving and Information Processing (171–186). Hillsdale, NJ: Erlbaum.Google Scholar
MacKay, D. M. (1973). Lateral interaction between neural channels sensitive to texture density? Nature 245: 159–161.CrossRefGoogle ScholarPubMed
Maddess, T., & Kulikowski, J. J. (1999). Apparent fineness of stationary compound gratings. Vision Res 39: 3404–3416.CrossRefGoogle ScholarPubMed
Massaro, D. W., & Anderson, N. H. (1971). Judgmental model of the Ebbinghaus illusion. J Exp Psychol 89: 147–151.CrossRefGoogle ScholarPubMed
Mateeff, S., & Gourevich, A. (1983). Peripheral vision and perceived visual direction. Biol Cybern 49: 111–118.CrossRefGoogle ScholarPubMed
Maunsell, J. H. R., & Gibson, J. R. (1992). Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68: 1332–1344.CrossRefGoogle ScholarPubMed
McBeath, M. K., Morikawa, K., & Kaiser, M. K. (1992). Perceptual bias for forward-facing motion. Psychol Sci 3: 362–367.CrossRefGoogle Scholar
McCourt, M. E. (1982). A spatial frequency dependent grating-induction effect. Vision Res 22: 119–134.CrossRefGoogle ScholarPubMed
McCready, D. (1965). Size-distance perception and accommodation-convergence micropsia – a critique. Vision Res 5: 189–206.CrossRefGoogle ScholarPubMed
McCready, D. (1985). On size, distance, and visual angle perception. Percept Psychophys 37: 323–334.CrossRefGoogle ScholarPubMed
McCready, D. (1986). Moon illusions redescribed. Percept Psychophys 39: 64–72.CrossRefGoogle ScholarPubMed
McKee, S. P., Silverman, G. H., & Nakayama, K. (1986). Precise velocity discrimination despite variations in temporal frequency and contrast. Vision Res 26: 609–619.CrossRefGoogle Scholar
McKee, S. P., & Smallman, H. S. (1998). Size and speed constancy. In V., Walsh & J., Kulikowski (eds.), Perceptual Constancy: Why Things Look As They Do (373–408). Cambridge: Cambridge University Press.Google Scholar
McKee, S. P., & Welch, L. (1989). Is there a constancy for velocity? Vision Res 29: 553–561.CrossRefGoogle Scholar
McKee, S. P., & Welch, L. (1992). The precision of size constancy. Vision Res 32: 1447–1460.CrossRefGoogle ScholarPubMed
Müller, R., & Greenlee, M. W. (1994). Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings. Vision Res 34: 2071–2092.CrossRefGoogle ScholarPubMed
Murakami, I., & Shimojo, S. (1993). Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes. Vision Res 33: 2091–2107.CrossRefGoogle ScholarPubMed
Newsome, L. R. (1972). Visual angle and apparent size of objects in peripheral vision. Percept Psychophys 12: 300–304.CrossRefGoogle Scholar
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370: 256–257.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature 386: 66–69.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2001). The flash-lag phenomenon: object motion and eye movements. Perception 30: 263–282.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.CrossRefGoogle ScholarPubMed
Ono, H. (1966). Distal and projected size under reduced and non-reduced viewing conditions. Am J Psychol 79: 234–241.CrossRefGoogle Scholar
Oppel, J. J. (1854–1855). Über geometrisch-optische Tauschungen. Jahresbericht des Frankfurter Vereins (37–47).Google Scholar
Orbison, W. D. (1939). Shape as a function of the vector-field. Am J Psychol 52: 31–45.CrossRefGoogle Scholar
Over, R. (1960). The effect of instructions on size-judgments under reduction-conditions. Am J Psychol 73: 599–602.CrossRefGoogle ScholarPubMed
Oyama, T., & Iwawaki, S. (1972). Role of convergence and binocular disparity in size constancy. Psychol Forsch 35: 117–130.CrossRefGoogle ScholarPubMed
Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press.Google Scholar
Pantle, A. (1992). Immobility of some second-order stimuli in human peripheral vision. J Opt Soc Am A 9: 863–867.CrossRefGoogle ScholarPubMed
Parker, A. (1981). Shifts in perceived periodicity induced by temporal modulation and their influence on the spatial frequency tuning of two aftereffects. Vision Res 21: 1739–1747.CrossRefGoogle Scholar
Parker, A. (1983). The effects of temporal modulation on the perceived spatial structure of sine-wave gratings. Perception 12: 663–682.CrossRefGoogle ScholarPubMed
Pastore, N. (1964). Induction of a stereoscopic depth effect. Science 144: 888.CrossRefGoogle ScholarPubMed
Pastore, N., & Terwilliger, M. (1966). Induction of stereoscopic depth effects. Br J Psychol 57: 201–202.CrossRefGoogle ScholarPubMed
Pavlova, M., Krägeloh-Mann, I., Birbaumer, N., & Sokolov, A. (2002). Biological motion shown backwards: the apparent-facing effect. Perception 31: 435–443.CrossRefGoogle ScholarPubMed
Pierce, B. J., Howard, I. P., & Feresin, C. (1998). Depth interactions between inclined and slanted surfaces in vertical and horizontal orientations. Perception 27: 87–103.CrossRefGoogle ScholarPubMed
Plug, C., & Ross, H. E. (1994). The natural moon illusion: a multifactor angular account. Perception 23: 321–333.CrossRefGoogle ScholarPubMed
Ramachandran, V. S. (1987). Interaction between colour and motion in human vision. Nature 328: 645–647.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception 19: 611–616.CrossRefGoogle ScholarPubMed
Raymond, J. E., & Darcangelo, S. M. (1990). The effect of local luminance contrast on induced motion. Vision Res 30: 751–756.CrossRefGoogle ScholarPubMed
Redding, G. M. (2002). A test of size-scaling and relative-size hypotheses for the moon illusion. Percept Psychophys 64: 1281–1289.CrossRefGoogle ScholarPubMed
Regan, D., & Beverly, K. I. (1982). How do we avoid confounding the direction we are looking and the direction we are going? Science 215: 194–196.CrossRefGoogle Scholar
Reid, T. (1813). Works. In Four Volumes. Stewart, Dugald, et al. Inquiry into the Human Mind. Charlestown: Samuel Etheridge, Jr., in vol 1.Google Scholar
Reinhardt-Rutland, A. H. (1983). Induced movement-in-depth: Relative location of static stimulus and direction asymmetry. Percept Mot Skills 57: 255–258.CrossRefGoogle ScholarPubMed
Rentschler, I., Hilz, R., & Grimm, W. (1975). Processing of positional information in the human visual system. Nature 253: 444–445.CrossRefGoogle ScholarPubMed
Rentschler, I., Hilz, R., Sütterlin, C., & Noguchi, K. (1981). Illusions of filled lateral and angular extent. Exp Brain Res 44: 154–158.CrossRefGoogle ScholarPubMed
Restle, F. (1970). Moon illusion explained on the basis of relative size. Science 167: 1092–1096.CrossRefGoogle ScholarPubMed
Robinson, E. J. (1954). The influence of photometric brightness on judgments of size. Am J Psychol 67: 464–474.CrossRefGoogle ScholarPubMed
Rock, I. (1983). The Logic of Perception. Cambridge, MA: MIT Press.Google Scholar
Rock, I., & Kaufman, L. (1962). The moon illusion, II. Science 136: 1023–1031.CrossRefGoogle ScholarPubMed
Rock, I., & McDermott, W. (1964). The perception of visual angle. Acta Psychologica 22: 119–134.CrossRefGoogle Scholar
Rogers, B. J., & Graham, M. E. (1983). Anisotropies in the perception of three-dimensional surfaces. Science 221: 1409–1411.CrossRefGoogle ScholarPubMed
Ross, J., Badcock, D. R., & Hayes, A. (2000). Coherent global motion in the absence of coherent velocity signals. Curr Biol 10: 679–682.CrossRefGoogle ScholarPubMed
Sato, M., & Howard, I. P. (2001). Effects of disparity-perspective cue conflict on depth contrast. Vision Res 41: 415–426.CrossRefGoogle ScholarPubMed
Schiffman, H. R., & Thompson, J. G. (1978). The role of apparent depth and context in the perception of the Ponzo illusion. Perception 7: 47–50.CrossRefGoogle ScholarPubMed
Schlag, J., Cai, R. H., Dorfman, A., Mohempour, A., & Schlag-Rey, M. (2000). Extrapolating movement without retinal motion. Nature 403: 38–39.CrossRefGoogle ScholarPubMed
Schlykowa, L., Ehrenstein, W. H., Cavonius, C. R., & Arnold, B. E. (1993). Perception 22 (suppl.): 97.
Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutger, S., Schall, J. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79: 3272–3278.CrossRefGoogle ScholarPubMed
Schneider, B., Ehrlich, D. J., Stein, R., Flaum, M., & Mangel, S. (1978). Changes in the apparent lengths of lines as a function of degree of retinal eccentricity. Perception 7: 215–223.CrossRefGoogle ScholarPubMed
Sedgwick, H. A. (1986). In K. R., Boff, L., Kaufman, & J. P., Thomas (eds.), Handbook of Perception and Human Performance, Vol. 1: Sensory Processes and Perception (21.1–21.57). New York: Wiley.Google Scholar
Sedgwick, H. A., & Nicholis, A. L. (1993). Interaction between surface and depth in the Ponzo illusion. Invest Ophthalmol Vis Sci 34: 1184.Google Scholar
Sheth, B. R., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3: 489–495.CrossRefGoogle ScholarPubMed
Smith, A. T., & Edgar, G. K. (1990). The influence of spatial frequency on perceived temporal frequency and perceived speed. Vision Res 30: 1467–1474.CrossRefGoogle ScholarPubMed
Snowden, R. J. (1999). The bigger they are the slower they move: the effects of field size on speed discrimination. Perception 28: 24S.Google Scholar
Snowden, R. J., & Hammett, S. T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Res 38: 1935–1945.CrossRefGoogle ScholarPubMed
Snowden, R. J., Stimpson, N., & Ruddle, R. A. (1998). Speed perception fogs up as visibility drops. Nature 392: 450.CrossRefGoogle ScholarPubMed
Solomon, J. A., Sperling, G., & Chubb, C. (1993). The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation. Vision Res 33: 2671–2683.CrossRefGoogle Scholar
Steger, J. A. (1969). Visual lightness assimilation and contrast as a function of differential stimulation. Am J Psychol 82: 56–72.CrossRefGoogle ScholarPubMed
Stone, L. S., & Thompson, P. (1992). Human speed perception is contrast dependent. Vision Res 32: 1535–1549.CrossRefGoogle ScholarPubMed
Swanston, M. T. (1984). Displacement of the path of perceived movement by intersection with static contours. Percept Psychophys 36: 324–328.CrossRefGoogle ScholarPubMed
Takeuchi, T., & De Valois, K. K. (2000). Modulation of perceived contrast by a moving surround. Vision Res 40: 2697–2709.CrossRefGoogle ScholarPubMed
te Pas, S. F., Rogers, B. J., & Ledgeway, T. (1997). A curvature contrast effect for stereoscopically-defined surfaces. Applied Vision Association Meeting on Depth Perception, United Kingdom.Google Scholar
Thompson, P. (1982). Perceived rate of movement depends on contrast. Vision Res 22: 377–380.CrossRefGoogle ScholarPubMed
Thouless, R. H. (1931). Phenomenal regression to the real object. I. Br J Psychol 21: 339–359.Google Scholar
Tinbergen, N. (1939). Why do the birds behave the way they do? Bird Lore 41: 23–30.Google Scholar
Tinbergen, N. (1951). The Study of Instinct. Oxford: Oxford University Press.Google Scholar
Treue, S., Snowden, R. J., & Andersen, R. A. (1993). The effect of transiency on perceived velocity of visual patterns: a case of “temporal capture.” Vision Res 33: 791–798.CrossRefGoogle Scholar
Tynan, P., & Sekuler, R. (1974). Perceived spatial frequency varies with stimulus duration. J Opt Soc Am 64: 1251–1255.CrossRefGoogle ScholarPubMed
Tynan, P., & Sekuler, R. (1975). Simultaneous motion contrast: velocity, sensitivity and depth response. Vision Res 15: 1231–1238.CrossRefGoogle ScholarPubMed
Tynan, P. D., & Sekuler, R. (1982). Motion processing in peripheral vision: reaction time and perceived velocity. Vision Res 22: 61–68.CrossRefGoogle ScholarPubMed
van Ee, R., Banks, M. S., & Backus, B. T. (1999). An analysis of binocular slant contrast. Perception 28: 1121–1145.CrossRefGoogle ScholarPubMed
Virsu, V. (1974). Dark adaptation shifts apparent spatial frequency. Vision Res 14: 433–435.CrossRefGoogle ScholarPubMed
Virsu, V., & Nyman, G. (1974). Monophasic temporal modulation increases apparent spatial frequency. Perception 3: 337–363.CrossRefGoogle ScholarPubMed
Virsu, V., Nyman, F., & Lehtiö, P. K. (1974). Diphasic and polyphasic temporal modulations multiply apparent spatial frequency. Perception 3: 323–336.CrossRefGoogle ScholarPubMed
Virsu, V., & Vuorinen, R. (1975). Dark adaptation and short-wavelength backgrounds decrease perceived size. Perception 4: 19–34.CrossRefGoogle ScholarPubMed
von Helmholtz, H. (1867/1962). Treatise on Physiological Optics vol. 3 (New York: Dover, 1962); English translation by JPC Southall for the Optical Society of America (1925) from the 3rd German edition of Hundbuch der Physiologischen Optik (Voss, Hamburg, 1910; first published in 1867, Voss, Leipzig).Google Scholar
Wade, N. J., & Swanston, M. T. (1984). Illusions of size change in dynamic displays. Percept Psychophys 35: 286–290.CrossRefGoogle ScholarPubMed
Walker, P., & Powell, D. J. (1974). Lateral interaction between neural channels sensitive to velocity in the human visual system. Nature 252: 732–733.CrossRefGoogle ScholarPubMed
Wallace, G. K. (1975). The effect of contrast on the Zollner illusion. Vision Res 15: 963–966.CrossRefGoogle ScholarPubMed
Wann, J. P., & Swapp, D. K. (2000). Why you should look where you are going. Nat Neurosci 3: 647–648.CrossRefGoogle ScholarPubMed
Watamaniuk, S. N. J., Grzywacz, N. M., & Yuille, A. L. (1993). Dependence of speed and direction perception on cinematogram dot density. Vision Res 33: 849–859.CrossRefGoogle ScholarPubMed
Weale, R. A. (1975). Apparent size and contrast. Vision Res 15: 949–955.CrossRefGoogle Scholar
Weale, R. A. (1978). Experiments on the Zöllner and related optical illusions. Vision Res 18: 203–208.CrossRefGoogle ScholarPubMed
Weintraub, D. J., & Schneck, M. K. (1986). Fragments of Delboeuf and Ebbinghaus illusions: contour/context explorations of misjudged circle size. Percept Psychophys 40: 147–158.CrossRefGoogle ScholarPubMed
Werner, H. (1938). Binocular depth contrast and the conditions of the binocular field. Am J Psychol 51: 489–497.CrossRefGoogle Scholar
Whitaker, D., McGraw, P. V., & Pearson, S. (1999). Non-veridical size perception of expanding and contracting objects. Vision Res 39: 2999–3009.CrossRefGoogle ScholarPubMed
Whitney, D., & Cavanagh, P. (2000). Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3: 954–959.CrossRefGoogle ScholarPubMed
Wilkie, R. M., & Wann, J. P. (2003). Eye-movements aid the control of locomotion. J Vis 3: 677–684.CrossRefGoogle ScholarPubMed
Yu, C., Klein, S. A., & Levi, D. M. (2001). Surround modulation of perceived contrast and the role of brightness induction. J Vis 1: 18–31.CrossRefGoogle ScholarPubMed
Zanker, J. M., Quenzer, T., & Fahle, M. (2001). Perceptual deformation induced by visual motion. Naturewissenschaften 88: 129–132.CrossRefGoogle ScholarPubMed
Zhang, J., Yeh, S-L., & De, Valois. (1993). Motion contrast and motion integration. Vision Res 33: 2721–2732.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×