Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T07:04:04.405Z Has data issue: false hasContentIssue false

2 - Geographical controls of mountain meteorological elements

Published online by Cambridge University Press:  20 May 2010

Roger G. Barry
Affiliation:
University of Colorado, Boulder
Get access

Summary

This chapter examines the controls on mountain weather and climate from the standpoint of the geographical determinants of the meteorological elements – radiation, temperature, air pressure, vapor pressure and wind. The geographical factors that most strongly influence these elements and hence mountain climates are latitude, continentality, altitude, and the topography.

LATITUDE

The influence of latitude on the climate of different mountain systems shows up in a variety of ways. First, solar and net radiation and temperature broadly decrease with increasing latitude and, as a result, the elevations of the tree line and of the snow line decrease polewards. This means that the belt of alpine vegetation (above tree line) and the nival belt of permanent snow and ice are represented on much lower mountains in high latitudes than in the tropics (see Figure 1.1, p. 3). Second, the latitude factor is apparent in the relative importance of seasonal and diurnal climatic rhythms. This is determined by the seasonal trend in the daily Sun path at different latitudes (Figure 2.1). Seasonal changes of solar radiation, day length and temperature are basically small in low latitudes, whereas the diurnal amplitude of temperature, for example, is relatively large. Thus, Hedberg (1964) characterizes the equatorial mountains of East Africa as experiencing “summer every day and winter every night.”

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, C. G. and Fowle, F. E. Jr. (1911) The value of the solar constant of radiation. Astrophys. J., 33, 191–6.CrossRefGoogle Scholar
Abetti, G. (1957) The Sun (transl. J. B. Sidgwick). London: Macmillan.Google Scholar
Aizenshtat, B. A. (1962) Nekotorie cherti radiatsionnogo rezhima teplogo balansa i mikroklimata gornogo perrevala (Some characteristics of the heat balance regime and microclimate of a mountain pass). Met. i Gidrol., 3, 27–32.Google Scholar
Allison, I. and Bennett, J. (1976) Climate and microclimate: In Hope, G. S., et al. (eds), The Equatorial Glaciers of New Guinea. Rotterdam: A. A. Balkema, pp. 61–80.Google Scholar
Ångstrøm, A. K. and Drummond, A. J. (1966) Note on solar radiation in mountainous regions at high altitude. Tellus, 18, 801–5.CrossRefGoogle Scholar
Ångstrøm, K. (1900) Intensité de la radiation à differentes altitudes. Recherches faites à Tenériffe. 1895 et 1896, Nova Acta Reg. Soc. Sci. Upsal., 20(3).Google Scholar
Aulitsky, H. (1962) Die Bodentemperaturverhältnisse einer zentralalpinen Hochgebirgs-Hangstation IIArchiv. Met. Geophys. Biokl., B, 11, 301–62.CrossRefGoogle Scholar
Aulitsky, H. (1984) Die Windverhältnisse an einer zentralalpinen Hangstation und ihre ökologische Bedeutung. 1 Teil, Cbl. ges. Forstw., 101, 193–232.Google Scholar
Aulitsky, H. (1985) Die Windverhältnisse an einer zentralalpineu Hangstation und ihre ökologische Bedeutung. 2 Teil, Cbl. ges. Forst., 102, 55–72.Google Scholar
Aulitsky, H., Turner, H. and Mayer, H. (1982) Bioklimatische Grundlagen einer standortsgemässen Bewirtschaftung des subalpinen Lärchen-Arvenwaldes, Eidg. Anst. forstl. Versuchswes., Mitt., 58(4), 325–580.Google Scholar
Bailey, S. I. (1908) Peruvian meteorology: observations made at the auxiliary stations. 1892–1895. Ann. Astron. Obs. Harvard Coll., 49(2), 104–232.Google Scholar
Baines, P. G. (1995) Topographic Effects in Stratified Flow. Cambridge: Cambridge University Press, 482 pp.Google Scholar
Barry, R. G. (1972) Climatic Environment of the East Slope of the Colorado Front Range, Occasional, Paper No. 3, Institute of Arctic and Alpine Research. Boulder, CO: University of Colorado, 206 pp.Google Scholar
Barry, R. G. (1973) A climatological transect on the east slope of the Front Range, Colorado. Arct. Alp. Res., 5, 89–110.CrossRefGoogle Scholar
Barry, R. G. (1978a) Diurnal effects on topoclimate on an equatorial mountain. Arbeiten. Zentralanst. Met. Geodynam., 32, 72, 1–8.Google Scholar
Barry, R. G. (1978b) H.-B. de Saussure: the first mountain meteorologist. Bull. Am. Met. Soc., 59, 702–5.2.0.CO;2>CrossRefGoogle Scholar
Barry, R. G. and Chorley, R. J. (2003) Atmosphere, Weather and Climate, 8th edn, London: Methuen, p. 48.Google Scholar
Barry, R. G. and Van Wie, C. C. (1974) Topo- and microclimatology in alpine areas. In Ives, J. D. and Barry, R. G. (eds), Arctic and Alpine Environments. London: Methuen, pp. 73–83.Google Scholar
Bartlett, M. G., Chapman, D. S. and Harris, R. N. (2004) Snow and the ground temperature record of climate change. J. Geophys. Res., 109 (4), F04008, 14.CrossRefGoogle Scholar
Becker, C. F. and Boyd, J. S. (1957) Solar variability on surfaces in the United States as affected by season, orientation, latitude, altitude and cloudiness. J. Solar Energy, 1, 13–21.CrossRefGoogle Scholar
Bener, P. (1963) Der Einfluss der Bewölkung auf die Himmelstrahlung. Arch. Met. Geophys. Biokl., B, 12, 442–57.CrossRefGoogle Scholar
Bergeron, T. (1960) Preliminary results of Project Pluvius. Helsinki: International Association for Science of Hydrology Publication No. 53, pp. 226–37.
Berk, L. S., et al. (1998) MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ., 65, 367–375.CrossRefGoogle Scholar
Bishop, B. C., et al. (1966) Solar radiation measurements in the high Himalayas (Everest region). J. appl. Met., 5, 94–104.2.0.CO;2>CrossRefGoogle Scholar
Blumthaler, M., Ambach, W. and Rehwald, W. (1992) Solar UV-A and UV-B radiative fluxes at two Alpine stations at different altitudes. Theor. Appl. Climatol., 46, 39–44.CrossRefGoogle Scholar
Blumthaler, M., Ambach, W. and Huber, M. (1993) Altitude effects of solar UV radiation dependent on albedo, turbidity and solar elevation. Met. Zeit., NF 2, 116–20.Google Scholar
Borisov, A. M., Grudzinski, M. E. and Khrgian, A. Kh. (1958) O meteorologicheskikh usloviakh vysokogornogo Tian-Shanya (Meteorological conditions of the high Tien-Shan). Trudy Tsentr. Aerol. Obs., 21, 175–99.Google Scholar
Borzenkova, I. (1967) K voprosy o vliyanii mestnykh faktorov na prikhod radiatsii v gornoi mestnosti (Concerning the influence of local factors on the course of radiation in mountain locations). Trudy Glav. Geofiz. Obs., 209, 70–7.Google Scholar
Bradley, E. F. (1980) An experimental story of the profiles of wind speed, shearing stress and turbulence at the crest of a large hill. Q. J. R. Met. Soc., 106, 101–24.CrossRefGoogle Scholar
Brazel, A. (1974) A note on topoclimatic variation of air temperature, Chitistone Pass region. Alaska. In Icefield Ranges Research Project, Scientific Results. New York: American Geographical Society, Vol. 4, pp. 81–7.Google Scholar
Brazel, A. and Outcalt, S. I. (1973a) The observation and simulation of diurnal surface thermal contrast in an Alaskan alpine pass. Arch. Met. Geophys. Biokl., B, 21, 157–74.CrossRefGoogle Scholar
Brazel, A. and Outcalt, S. I. (1973b) The observation and simulation of diurnal evaporation contrasts in an Alaskan alpine pass. J. appl. Met., 12, 1134–43.2.0.CO;2>CrossRefGoogle Scholar
Brocks, K. (1940) Lokale Unterschiede und zeitliche Änderungen der Dichteschichtung in der Gebirgsatmosphare. Met. Zeit., 57, 62–73.Google Scholar
Bruegge, C. J., et al. (1992) Aerosol optical depth retrievals over the Konza Prairie. J. Geophys. Res., 97, 18743–58.CrossRefGoogle Scholar
Brunt, D. (1932) Notes on radiation in the atmosphere. Q. J. R. Met. Soc., 58, 389–420.CrossRefGoogle Scholar
Budyko, M. I. (1974) Climate and Life. New York: Academic Press, pp. 189–92.Google Scholar
Calbo, J., Pages, D. and González, J.-A. (2005) Empirical studies of cloud effects on UV radiation. Rev. Geophys., 43(2), RG 2002, 28 pp.CrossRefGoogle Scholar
Caldwell, M. M. (1968) Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol. Monogr., 38, 243–68.CrossRefGoogle Scholar
Caldwell, M. M. (1980) Light quality with special reference to UV at high altitudes. In Benecke, U. and Davis, M. R. (eds), Mountain Environments and Subalpine Tree Growth. Wellington: Technical Paper No. 70, Forest Research Institute, New Zealand Forest Service, pp. 61–79.Google Scholar
Carroll, T., et al. (2001) NOHRSC operations and the simulation of snow cover properties for the coterminous U. S. In Proc., 69th Annual Meeting, Western Snow Conference, Sun Valley, Idaho: NOAA/NWS, pp. 1–10.Google Scholar
Carruthers, D. J. and Choularton, T. W. (1982) Airflow over hills of moderate slope. Q. J. R. Met. Soc., 108, 603–24.CrossRefGoogle Scholar
Carruthers, D. J. and Hunt, J. C. R. (1990) Fluid mechanisms of airflow over hills: Turbulence, fluxes, and waves in the boundary layer. In Blumen, W. (ed.), Atmospheric Processes over Complex Terrain, Met. Monogr. 23(45), Boston, MA: American Meteorological Society, pp. 83–103.Google Scholar
Chelton, D. B., Freilich, M. H. and Esbensen, S. K. (2000) Satellite observations of the wind jets off the Pacific Coast of Central America. Part I, Case studies and statistical characteristics. Part II. Regional relationships and dynamical considerations. Mon. Wea. Rev., 1993–2017, 2019–43.Google Scholar
Chen, L., Reiter, E. R. and Feng, Z. (1985) The atmospheric heat source over the Tibetan Plateau; May–August 1979. Mon. Wea. Rev, 113, 1771–90.2.0.CO;2>CrossRefGoogle Scholar
Cline, D., Bales, R. and Dozier, J. (1998) Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling. Water Resour. Res., 34(5), 1275–85.CrossRefGoogle Scholar
COESA (1962) US Standard Atmosphere, 1962. US Comm., Extension Standard Atmosphere, Washington DC: COESA.
Conrad, V. (1944) Methods of Climatology. Cambridge, MA: Harvard University Press.Google Scholar
Corripio, J. (2003) Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modeling in mountainous terrain. Int. J. Geogr. Inf. Sci., 17, 1–23.CrossRefGoogle Scholar
Cramer, O. P. (1972) Potential temperature analysis for mountainous terrain. J. appl. Met., 11, 44–50.2.0.CO;2>CrossRefGoogle Scholar
Cramer, O. P. and Lynott, R. E. (1961) Cross-section analysis in the study of windflow over mountainous terrain. Bull. Am. Met. Soc., 42, 693–702.Google Scholar
Crook, N. A. and Tucker, D. F. (2005) Flow over heated terrain. Part I: Linear theory and idealized numerical simulations. Mon. Wea. Rev., 133(9), 2442–64.CrossRefGoogle Scholar
Davidson, B., et al. (1964) Sites for Wind-power Installations. W. M.O. Tech. Note 63. Geneva: World Meteorological Organization.Google Scholar
Davies, H. C. and Phillips, P. D. (1985) Mountain drag along the Gotthard section during ALPEX. J. Atmos. Sci., 42, 2093–109.2.0.CO;2>CrossRefGoogle Scholar
Deng, X. and Stull, R. (2005) A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. Mon. Wea. Rev., 133, 389–408.CrossRefGoogle Scholar
Quervain, A. (1904) Die Hebung der atmosphärischen Isothermen in der Schweizer Alpen und ihre Beziehung zu deren Höhengrenzen. Gerlands Beitr. Geophys., 6, 481–533.Google Scholar
Ding, L., Calhoun, R. J. and Street, R. L. (2003) Numerical simulation of strongly stratified flow over a three dimensional hill. Boundary-Layer Met., 107, 81–114.CrossRefGoogle Scholar
Dirmhirn, I. (1951) Untersuchungen der Himmelstrahlung in den Ostalpen mit besonder Berücksichtigung ihrer Höhenabhängigkeit. Arch. Met. Geophys. Biokl. B, 2, 301–46.CrossRefGoogle Scholar
Dorman, C. E., Beardsley, R. C. and Limeburner, R. (1995) Winds in the Strait of Gibraltar. Q. J. R. Met. Soc., 121, 1903–21.CrossRefGoogle Scholar
Dorno, C. (1911) Studie über Licht und Luft des Hochgebirges. Braunschweig: Vieweg und Sohn.Google Scholar
Dozier, J. (1980) A clear-sky spectral solar radiation model for snow-covered mountainous terrain. Water Resour. Res. 16, 709–18.CrossRefGoogle Scholar
Dozier, J. and Frew, J. (1990) Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosc. Rem. Sensing, 28(5), 963–69.CrossRefGoogle Scholar
Dozier, J. and Outcalt, S. I. (1979) An approach toward energy balance simulation over rugged terrain. Geog. Anal., 11, 65–85.CrossRefGoogle Scholar
Drummond, A. J. and Ångstrøm, A. K. (1967) Solar radiation measurements on Mauna Loa (Hawaii) and their bearing on atmospheric transmission. Solar Energy, 11, 133–44.CrossRefGoogle Scholar
Dubayah, R. (1994) Modeling a solar radiation topoclimatology for the Rio Grande River Basin. J. Vegetation Sci., 5, 627–40.CrossRefGoogle Scholar
Dubayah, R. and Katwijk, V. (1992) The topographic distribution of annual incoming solar radiation in the Rio Grande basin. Geophys. Res. Lett., 19, 2231–34.CrossRefGoogle Scholar
Duguay, C. R. (1993) Radiation modeling in mountainous terrain: Review and status. Mountain Res. Devel., 13, 339–57.CrossRefGoogle Scholar
Eckel, O. (1936) Uber einige Eigenschaften der ultravioletten Himmelstrahlung in verschiedenen Meereshöhen und bei Föhnlage. Met. Zeit., 53, 90–4.Google Scholar
Eide, O. (1948) On the temperature difference between mountain peak and free atmosphere at the same level. II. Gaustatoppen-Kjeller. Met. Annal., 2(3), 183–206.Google Scholar
Ekhart, E. (1939a) Mittlere Temperaturverhältnisse der Alpen und der freien Atmosphäre über dem Alpenvorland. Ein Beitrag zur dreidimensionalen Klimatologie. 1. Die Temperaturverhältnisse der Alpen. Met. Zeit., 56, 12–26.Google Scholar
Ekhart, E. (1939b) Temperaturverhältnisse der freien Atmosphare über München und Vergleich mit den Alpen. Met. Zeit., 56, 49–57.Google Scholar
Elterman, L. (1964) Atmospheric attenuation model, 1964, in the ultraviolet, visible and infrared regions for altitudes to 50 km. Environment Research Paper No. 46, AFCRL-64-740. Cambridge, MA: US Air Force Cambridge Research Laboratories.
Erickson, T. A., Williams, M. W. and Winstral, A. (2005) Persistence of topographic controls on the spatial distribution of snow in rugged terrain, Colorado, United States. Water Resour. Res., 41, W04014, 17 pp.CrossRefGoogle Scholar
Essery, R. (2004) Statistical representation of mountain shading. Hydrol. Earth Syst. Sci., 8, 1045–50CrossRefGoogle Scholar
Etling, D. (1989) On atmospheric vortex streets in the wake of large islands. Met. Atmos. Phys., 41, 157–64.CrossRefGoogle Scholar
Eustis, R. S. (1942) The winds over New England in relation to topography. Bull. Am. Met. Soc., 28, 383–7.Google Scholar
Ferguson, S. P. (1934) Aerological studies on Mt. Washington. Trans. Am. Geophys. Union, 15, 114–17.CrossRefGoogle Scholar
Ficker, H. (1913a) Die Wirkung der Berge auf Luftströmungen. Met. Zeit., 30, 608–10.Google Scholar
Ficker, H. (1913b) Temperaturdifferenz zwischen freier Atmosphäre und Berggipfeln. Met. Zeit., 30, 278–304.Google Scholar
Ficker, H. (1926) Vertikale Temperaturgradienten im Gebirge. Veroff. Preuss. Met. Inst., 335, 45–62.Google Scholar
Flach, E. (1966) Geographische Verteilung der Globalstrahlung und Himmelstrahlung. Arch. Met. Geophys. Biokl., B 14, 161–83.Google Scholar
Fliri, F. (1971) Neue klimatologische Querprofile der Alpen-ein Energiehaushalt. Ann. Met., N. F. 5, 93–7.Google Scholar
Flohn, H. (1953) Hochgebirge und allgemeine Zirkulation. ll. Die Gebirge als Wärmequellen. Arch. Met. Geophys. Biokl., A, 5, 265–79.Google Scholar
Flohn, H. (1968) Contributions to a meteorology of the Tibetan Highlands. Atmos. Sci. Paper No. 130. Ft. Collins, CO: Colorado State University.
Flohn, H. (1974) Contribution to a comparative meteorology of mountain areas. In Ives, J. D. and Barry, R. G. (eds), Arctic and Alpine Environments. London: Methuen, pp. 55–71.Google Scholar
Frère, M., Rijks, J. Q. and Rea, J. (1975) Estudios Agroclimatologico de la Zona Andina, Informe Technico. Rome: Food and Agricultural Organization of the United Nations.Google Scholar
Fujimara, I. (1971) The climate and weather of Mt. Fuji. Fujisan-sogogakujutsuchosa-hokoku (Mt. Fuji, Scientific Report). Tokyo: Fujikyuko Co. Ltd, pp. 215–304.Google Scholar
Gale, J. (1972) Elevation and transpiration: some theoretical considerations with special reference to Mediterranean-type climate. J. Appl. Ecol., 9, 691–702.CrossRefGoogle Scholar
Gallagher, M. W., Choularton, T. W. and Hill, M. K. (1988) Some observations of airflow over a large hill of moderate slope, Boundary-Layer Met., 42, 22–50.CrossRefGoogle Scholar
Gams, H. (1931) Die klimatische Begrenzung von Pflanzenarealen und die Verteilung der hygrischen Kontinentalität in den Alpen. I. Teil, Zeitschr. Ges. f. Erdkunde, Berlin, Nr. 9/10, 321–46.Google Scholar
Gao, Y.-X. and Li, C. (1981) Influences of Qinghai-Xizang Plateau on seasonal variation of atmospheric general circulation. In Geoecological and Ecological Studies of Qinghai-Xizang Plateau. Beijing: Science Press, Vol. 2, pp. 1477–84.Google Scholar
Garnier, B. J. and Ohmura, A. (1968) A method of calculating the direct short wave radiation income of slopes. J. Appl. Met., 7, 796–800.2.0.CO;2>CrossRefGoogle Scholar
Garnier, B. J. and Ohmura, A. (1970) The evaluation of surface variations in solar radiation income. Solar Energy, 13, 21–34.CrossRefGoogle Scholar
Gates, D. M. and Janke, R. (1966) The energy environment of the alpine tundra. Oecol. Planta, 1, 39–62.Google Scholar
Geerts, B. (2002) Empirical estimation of the annual range of monthly-mean temperature. Theor. Appl. Climatol., 73, 107–32.CrossRefGoogle Scholar
Geiger, R., Aron, R. H. and Todhunter, P. (2003) The Climate near the Ground. 6th edn. Lanham, MA: Rowman and Littlefield, 584 pp.Google Scholar
Georgii, W. (1922) Die Windbeeinflussung durch Gebirge. Beitr. Phys. frei Atmos., 10, 178–84.Google Scholar
Georgii, W. (1923) Die Luftströmung über Gebirge. Met. Zeit., 40, 108–12, 309–11.Google Scholar
Giles, B. D. (1976) Fluidics, the Coanda effect and some orographic winds. Arch. Met. Geophys. Biokl., A, 25, 273–80.Google Scholar
Glassy, J. M. and Running, S. W. (1994) Validating diurnal climatology logic of the MT-CLIM model across a climatic gradient in Oregon. Ecol. Applications, 4, 248–57.CrossRefGoogle Scholar
Glickman, T. S. (ed.) (2000) Glossary of Meteorology. Boston, MA: American Meteorological Society, 855 pp.Google Scholar
Gloyne, R. W. (1955) Some effects of shelter-belts and windbreaks. Met. Mag., 84, 272–81.Google Scholar
Gloyne, R. W. (1971) A note on the average annual mean of daily earth temperature in the United Kingdom. Met. Mag., 100, 1–6.Google Scholar
Grace, J. (1977) Plant Response to Wind. London: Academic Press.Google Scholar
Grant, A. N., Pszenny, A. A. P. and Fischer, E. V. (2005) The 1935–2003 air temperature record from the summit of Mount Washington, New Hampshire. J. Climate, 18(21):4, 445–53.CrossRefGoogle Scholar
Green, F. H. W. and Harding, R. J. (1979) The effect of altitude on soil temperature. Met. Mag., 108, 81–91.Google Scholar
Green, F. H. W. and Harding, R. J. (1980) Altitudinal gradients of soil temperatures in Europe. Trans. Inst. Brit. Geog., 5, 243–54.CrossRefGoogle Scholar
Green, J. S. A. (1984) Describing the Alps, Riv. Met. Aeronaut., 44, 23–30.Google Scholar
Greenstein, L. A. (1983) An investigation of midlatitude alpine permafrost on Niwot Ridge, Colorado Rocky Mountains, USA. In Pewe, T. L. and Brown, J., (eds), Permafrost; Fourth International Conference Proceedings.Washington, DC: National Academy Press, pp. 380–3.Google Scholar
Groner, J., et al. (2000) Variability of spectral solar ultraviolet radiation in an Alpine environment. J. Geophys, Res., 105(D22), 26 991–27 003.CrossRefGoogle Scholar
Grunow, J. (1952) Beiträge zum Hangklima, Berichte dt. Wetterdienstes in der US-Zone, 8(35), 293–8.Google Scholar
Gutman, G. J. and Schwerdtfeger, W. (1965) The role of latent and sensible heat for the development of a high pressure system over the subtropical Andes in the summer. Met. Rdsch., 18, 69–75.Google Scholar
Hand, I. F., Conover, J. H. and Boland, W. A. (1943) Simultaneous pyrheliometric measurements at different heights on Mount Washington, N. H. Mon. Weather Rev., 71, 65–9.2.0.CO;2>CrossRefGoogle Scholar
Hann, J. (1906) Lehrbuch der Meteorologie. Leipzig: C. H. Tauchinitz.Google Scholar
Hann, J. (1913) Die Berge kälter als die Atmosphäre, ein meteorologisches Paradoxon. Met. Zeit., 30, 304–6.Google Scholar
Hänsel, C. (1962) Die Unterschiede von Temperatur und relativer Feuchtigkeit zwischen Brocken und umgebender freier Atmosphäre. Zeit. Met., 16, 248–52.Google Scholar
Harding, R. J. (1978) The variation of the altitudinal gradient of temperature within the British Isles. Geogr. Ann., A 60, 43–9.CrossRefGoogle Scholar
Harding, R. J. (1979) Altitudinal gradients of temperature in the northern Pennines. Weather, 34, 190–201.CrossRefGoogle Scholar
Harrison, S. J. (1975) The elevation component of soil temperature variation. Weather, 30, 397–409.CrossRefGoogle Scholar
Hastenrath, S. L. (1968) Der regionale und jahrzeitliche Wandel des vertikalen Temperaturgradienten und seine Behandlung als Wärmhaushaltsproblem. Met. Rdsch., 21, 46–51.Google Scholar
Hastenrath, S. (1997) Measurements of solar radiation and estimation of optical depth in the high Andes of Peru. Met. Atmos. Phys., 64, 51–9.CrossRefGoogle Scholar
Hauer, H. (1950) Klima und Wetter der Zugspitze. Berichte d. Deutschen Wetterdienstes in der US-Zone, 16.Google Scholar
Hay, J. E. (1977) An analysis of solar radiation data for selected locations in Canada. Climate Studies, 32. Downsview, Ontario: Atmos. Env. Service.Google Scholar
Hay, J. E. (1979) Study of shortwave radiation on non-horizontal surfaces. Downsview, Ontario: Canada Climate Centre, Atmos. Env. Serv. Rep. no. 79–12.Google Scholar
Hay, J. E. (1983) Solar energy system design: the impact of mesoscale variations in solar radiation. Atmos.-Ocean, 21, 138–57.CrossRefGoogle Scholar
Hay, J. E. and McKay, D. C. (1985) Estimating solar irradiance on inclined surfaces: A review and assessment of methodologies. Int. J. Solar Energy, 3, 203–40.CrossRefGoogle Scholar
Hedberg, O. (1964) Features of afroalpine plant ecology. Acta phytogeographica suecica, 49.Google Scholar
Hess, M. (1968) A method of distinguishing and specifying vertical temperature zones in temperate zone mountains. Geogr. Polonica, 14: 133–40.Google Scholar
Hess, M., Niedzwiedz, T. and Obrebska-Starkel, B. (1975) The methods of constructing climatic maps of various scales for mountains and upland territories exemplified by the maps prepared for southern Poland. Geogr. Polonica, 31, 163–87.Google Scholar
Hess, M., Niedzweidz, T. and Obrebska-Starkel, B. (1976) The method of characterizing the climate of the mountains and uplands in the macro-, meso- and microscale (exemplified by Southern Poland). Zesz. Nauk. Univ. Jagiellon., Prace Geog., 43, 83–102.Google Scholar
Heywood, H. (1964) Solar radiation on inclined surfaces. Nature, 204 (4959), 669–70.CrossRefGoogle Scholar
Hnatiuk, R. J., Smith, J. M.B. and McVean, D. N. (1976) Mt. Wilhelm studies. II. The Climate of Mt. Wilhelm. Canberra: Australian National University, Biogeography Studies 4.Google Scholar
Holroyd, E. W. III (1970) Prevailing winds on Whiteface Mountain as indicated by flag trees. For. Sci., 16, 222–9.Google Scholar
Holtmeier, F. K. (1978) Die bodennahen Winde in den Hochlagen der Indian Peaks Section (Colorado Front Range). Münster Geogr. Arbeit., 3, 3–47.Google Scholar
Holtmeier, F. K. (2003) Mountain Timberlines: Ecology, Patchiness, and Dynamics. Kluwer: Dordrecht, 369 pp.CrossRefGoogle Scholar
Hunt, J. R. (1980) Winds over hills. In Wyngaard, J. C. (ed.), Workshop on the Planetary Boundary Layer. Boston, MA: American Meteorological Society, pp. 107–44.Google Scholar
Hunt, J. C. R. and Richards, K. J. (1984) Stratified airflow over one or two hills. Boundary-Layer Met., 30, 223–59.CrossRefGoogle Scholar
Hunt, J. C. R. and Simpson, J. E. (1982) Atmospheric boundary layers over non-homogeneous terrain. In Plate, E. J. (ed.), Engineering Meteorology. Amsterdam: Elsevier, pp. 269–318Google Scholar
Hunt, J. C. R. and Snyder, W. H. (1980) Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671–704.CrossRefGoogle Scholar
Hunt, J. C. R., Richards, K. J. and Brighton, P. W. M. (1988) Stably stratified flow over low hills. Q. J. R. Met. Soc., 114, 859–86.CrossRefGoogle Scholar
Ingram, M. (1958) The ecology of the Cairngorms. IV. The Juncus zone: Juncus trifidis communities. J. Ecol., 46, 707–37.CrossRefGoogle Scholar
Isard, S. A. (1986) Evaluation of models for predicting insolation on slopes within the Colorado alpine tundra. Solar Energy, 36, 559–64.CrossRefGoogle Scholar
Isard, S. A. and Belding, M. J. (1986) Evapotranspiration from the alpine tundra of Colorado. USA. Arct. Alp. Res., 21, 71–82.CrossRefGoogle Scholar
Ives, J. D. and Fahey, B. D. (1971) Permafrost occurrence in the Front Range, Colorado Rocky Mountains, USA. J. Glaciol., 10, 105–111.CrossRefGoogle Scholar
Iziomon, M. G., et al. (2001) Radiation balance over low-lying and mountainous areas in south-west Germany. Theoret. Appl. Climatol., 68, 219–31.CrossRefGoogle Scholar
Jackson, P. S. and Hunt, J. C. R. (1975) Turbulent wind flow over a low hill. Q. J. R. Met. Soc., 101, 929–55.CrossRefGoogle Scholar
Janke, J. R. (2005) The occurrence of alpine permafrost in the Front Range of Colorado. Geomorphology, 67, 375–89.CrossRefGoogle Scholar
Kastrov, V. G. (1956) Solnechnaia radiatsiia v troposfere v sluchae absoliutno chistnogo i sukhogo vozdukha. Trudy Tsentr. Aerol. Obs., 16, 23–30.Google Scholar
Khrgian, A. Kh. (1965) Atmospheric moisture distribution over mountain country. Atmos. Ocean. Phys. Izvestiya Acad. Sci. USSR, 1(4), 233–6.Google Scholar
Kimball, H. H. (1927) Measurements of solar radiation intensity and determinations of its depletion by the atmosphere with bibliography of pyrheliometric measurements. Mon. Weather Rev., 55, 155–69.2.0.CO;2>CrossRefGoogle Scholar
Kimura, F. and Manins, P. (1988) Blocking in periodic valleys. Boundary-Layer Met., 44, 137–69.CrossRefGoogle Scholar
Klein, W. H. (1948) Calculation of solar radiation and the solar heat load on man. J. Met., 5, 119–29.2.0.CO;2>CrossRefGoogle Scholar
Kleinschmidt, E. (1913) Die Temperaturverhältnisse in der freien Atmosphäre und auf Berggipfeln nach den Massungen der Drachenstation am Bodensee und der Observatorien auf der Säntis und der Zugspitze. Beitr. Phys. frei. Atmos., 6, 1–18.Google Scholar
Kondratyev, K. Ya. (1969) Radiation in the Atmosphere. New York: Academic Press.Google Scholar
Kleissl, J., Honrath, R. E. and Henriques, D. V. (2006) Analysis and application of Sheppard's airflow model to predict mechanical orographic uplifting and the occurrence of mountain clouds. J. Appl. Met. Climatol., 45, 1376– 87.CrossRefGoogle Scholar
Kondratyev, K. Ya. (1969) Radiation in the Atmosphere. New York: Academic Press, pp. 485–502.Google Scholar
Kondratyev, K. Ya. and Federova, M. P. (1977) Radiation regime of inclined slopes. Geneva: World Meteorological Organization, W. M.O. Tech. Note no. 152.
Kondratyev, K. Ya. and Manolova, M. P. (1960) The radiation balance of slopes. Solar Energy, 4, 14–19.CrossRefGoogle Scholar
Körner, C. (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2nd edn. Berlin: Springer, 344 pp.CrossRefGoogle Scholar
Kreuels, R., Fraedrich, K. and Ruprecht, E. (1975) An aerological climatology of South America, Met. Rdsch., 28, 17–26.Google Scholar
Kuz'min, P. P. (1972) Melting of Snow Cover (Russian original 1961). Jerusalem: Israel Prog. Sci. Transl.Google Scholar
Langley, S. P. (1884) Researches on solar heat and its absorption by the earth's atmosphere. A report on the Mount Whitney expedition. Washington, DC: US War Dept., Prof. Pap. Signal Service XV.
Lapen, D. R. and Martz, L. W. (1992) The measurement of two simple indices of wind sheltering-exposure from raster digital elevation models. Comput. Geosci., 19, 769–79.CrossRefGoogle Scholar
Larcher, W. (1980) Klimastress im Gebirge-Adaptionstraining und Selektions-filter für Pflanzen, Rheinisch-Westfalien Akad. Wiss. no. 291, 49–80.Google Scholar
Lauscher, F. (1937) Die Zunahme der Intensität der Sonnenstrahlung mit der Hohe. Gerlands Beitr. Geophys, 50, 202–15.Google Scholar
Lauscher, F. (1966) Die Tagesschwankung der Lufttemperatur auf Hõhenstation in allen Erdteilen. 60–62 Jahresberichte des Sonnblick-Vereines für die Jahre 1962–64. Vienna. pp. 3–17.CrossRefGoogle Scholar
Lauscher, F. (1976) Methoden zur Weltklimatologie der Hydrometeore. Der Anteil des festen Niederschlags am Gesamtniederschlag. Arch. Met. Geophys. Biokl., B, 24, 129–76.CrossRefGoogle Scholar
Lautensach, H. and Bogel, R. (1956) Der Jahrsgang des mittleren geographischen Höhengradienten der Luftemperatur in den verschiedenen Klimagebieten der Erde. Erdkunde, 10, 270–82.Google Scholar
LeDrew, E. F. (1975a) The estimation of clear sky atmospheric emittance at high altitudes. Arct. Alp. Res., 7, 227–36.CrossRefGoogle Scholar
LeDrew, E. F. (1975b) The energy balance of a mid-latitude alpine site during the growing season, 1973. Arct. Alp. Res., 7, 301–14.CrossRefGoogle Scholar
Lee, J. T., Lawson, R. E. Jr., and March, G. L. (1987) Flow visualization experiments on stably stratified flow over ridges and valleys. Met. Atmos. Phys., 37, 183–94.CrossRefGoogle Scholar
Lee, R. (1962) Theory of the “equivalent slope”. Mon. Wea. Rev., 90, 165–6.2.0.CO;2>CrossRefGoogle Scholar
Lee, R. (1978) Forest Microclimatology. New York: Columbia University Press.Google Scholar
Lenoble, J.,Kylling, A. and Smalskaia, I. (2004) Impact of snow cover and topography on ultraviolet irradiance at the Alpine station of Briançon. J. Geophys. Res., 109(D8), D08107, 7 pp.CrossRefGoogle Scholar
Linacre, E. (1982) The effect of altitude on the daily range of temperature. J. Climatol., 2, 375–82.CrossRefGoogle Scholar
Loescher, K. A., et al. (2006) Climatology of barrier jets along the Alaskan coast. Part 1: Spatial and temporal distribution. Mon. Wea. Rev., 134, 437–53.CrossRefGoogle Scholar
Loudon, A. G. and Petheridge, P. (1965) Solar radiation on inclined surfaces. Nature, 206 (4984), 603–4.CrossRefGoogle Scholar
Lowry, W. P. (1980a) Clear-sky direct-beam solar radiation versus altitude: a proposal for standard soundings. J. appl. Met., 19, 1323–27.2.0.CO;2>CrossRefGoogle Scholar
Lowry, W. P. (1980b) Direct and Diffuse Solar Radiation: Variations with Atmospheric Turbidity and Altitude. Urbana-Champaign: Institute for Environmental Studies, University of Illinois. Research Report No. 6.Google Scholar
Luedi, W. (1938) Mikroklimatische Untersuchungen an einem Vegetationsprofil in den Alpen von Davos. Ber. Geobotan, Inst ETH, Stift Ruebel 1938, 29–49.Google Scholar
Luo, H.-B. and Yanai, N. (1984) The large-scale circulation and heat sources over the Tibetan Plateau and surrounding regions during the early summer of 1979: Part II. Heat and moisture budgets. Mon. Wea. Rev., 112(5), 966–89.2.0.CO;2>CrossRefGoogle Scholar
Mani, M. S. (1962) Introduction to High Altitude Entomology. London: Methuen, pp. 1–73.Google Scholar
Marks, D. and Dozier, J. (1979) A clear-sky longwave radiation model for remote alpine areas. Arch. Met. Geophys. Biokl., B.27, 159–87.CrossRefGoogle Scholar
Marty, C., et al. (2002) Altitude dependence of surface radiation fluxes and cloud forcing in the Alps: results from the Alpine Surface Radiation Budget network. Theoret. Appl. Climatol., 72, 137–55.CrossRefGoogle Scholar
Mason, P. J. (1987) Diurnal variations in flow over a succession of ridges and valleys. Q. J. R. Met Soc., 113, 1117–40.CrossRefGoogle Scholar
Mason, P. J. and King, J. C. (1984) Atmospheric flow over a succession of nearly two-dimensional ridges and valleys. Q. J. R. Met. Soc., 110, 821–45.CrossRefGoogle Scholar
Mason, P. J. and Sykes, R. I. (1979) Flow over an isolated hill of moderate slope. Q. J. R. Met. Soc., 105, 383–95.CrossRefGoogle Scholar
Matulla, C., et al. (2005) Outstanding Past Decadel-scale Climate events in the Greater Alpine Region Analysed by 250 years Data and Model Runs. GKSS 2005/4. Geesthacht, Germany: GKSS Forschungszentrum, 114 pp.Google Scholar
Matzinger, N., et al. (2003) Surface radiation budget in an Alpine valley. Q. J. R. Met. Soc., 129(588), 877–95.CrossRefGoogle Scholar
Maurer, J. (1916) Bodentemperatur und Sonnestrahlung in den Schweizer Alpen. Met. Zeit., 33, 193–9.Google Scholar
McCutchan, M. H. (1983) Comparing temperature and humidity on a mountain slope and in the free air nearby. Mon. Wea. Rev., 111, 836–45.2.0.CO;2>CrossRefGoogle Scholar
McCutchan, M. H. and Fox, D. G. (1986) Effect of elevation and aspect on wind, temperature and humidity. J. Clim. Appl. Met., 25, 1996–2013.2.0.CO;2>CrossRefGoogle Scholar
McCutchan, M. H., Fox, D. G. and Furman, R. W. (1982) San Antonia Mountain Experiment (SAMEX). Bull. Amer. Met. Soc., 63, 1123–31.2.0.CO;2>CrossRefGoogle Scholar
Meroney, R. N. (1990) Fluid dynamics of flow over hills/mountains – insights through physical modeling. In Blumen, W. (ed.), Atmospheric Processes over Complex Terrain. Met. Monogr. 23(45). Boston, MA: American Meteorological Society, pp. 145–71.Google Scholar
Minzer, R. A. (1962) A History of Standard and Model Atmospheres. 1847 to 1962. Bedford, MA: Geophysics Corp. America, TR 62-6-N.Google Scholar
Molnar, P. and Emanuel, K. A. (1999) Temperature profiles in radiative-convective equilibrium above surfaces at different heights. J. Geophys. Res., 104(D20), 24, 265–271.CrossRefGoogle Scholar
Molotch, N. P., et al. (2004) Incorporating remotely sensed snow albedo into spatially distributed snowmelt modeling. Geophys. Res. Lett., 31, L0350, 4 pp.CrossRefGoogle Scholar
Mueller, H. (1984) Zum Strahlungshaushalt im Alpenraum. In Mitteilungen der Versuchsanstalt fuer Wasserbau, Hydrologie und Glaziologie. No. 71. Zurich: ETH, 167 pp.Google Scholar
Mueller, H. (1985) Review paper on the radiation budget in the Alps. J. Climatol., 5, 445–62.CrossRefGoogle Scholar
Müller, F., et al. (1980) Combined ice, water and energy balances of a glacierized basin of the Swiss Alps – the Rhonegletscher Project. Geography in Switzerland. Geogr. Helvet., 35(5), 57–69.Google Scholar
Nägeli, W. (1971) Der Wind als Standortsfaktor bei Aufforstungen in der subalpinen Stufe. Mitt. Schweiz. Anst. Förstl. Versuch, 47, 33–147.Google Scholar
Neuwirth, F. (1979) Beziehungen zwischen Globalstrahlung, Himmelstrahlung und extraterrestrischer Strahlung in Osterreich. Arch. Met. Geophys. Biokl., B 27, 1–13.CrossRefGoogle Scholar
Nicholls, J. M. (1973) The Airflow over Mountains. Research, 1958–1972. Geneva: World Meteorological Organization, WMO Tech. Note no. 127.Google Scholar
Ohmura, A. (1990) On the wind profile over the Alps, Proc. xxi Internat. Tagung f. Alpine Meteorologie, Veröff, Schweiz. Met. Anstalt 48, 102–5.Google Scholar
Oliphant, A. J., et al. (2003) Spatial variability of surface radiation fluxes in mountainous terrain. J. Appl. Met., 42(1), 113–28.2.0.CO;2>CrossRefGoogle Scholar
Oliver, J. (1962) The thermal regime of upland peat soils in a maritime temperate climate. Geogr. Ann., 44, 293–302.Google Scholar
Olyphant, G. A. (1984) Insolation topoclimates and potential ablation in alpine snow accumulation basins: Front Range, Colorado. Water Resour. Res., 20, 491–8.CrossRefGoogle Scholar
Olyphant, G. A. (1986) Longwave radiation in mountainous areas and its influence on the energy balance of alpine snowfields. Water Resour. Res., 22, 62–6.CrossRefGoogle Scholar
Orlanski, I. (1975) A rational subdivision of scales for atmospheric processes. Bull. Amer. Met. Soc., 56(5), 527–30.Google Scholar
Overland, J. E. (1984) Scale analysis of marine winds in straits along mountainous coasts. Mon. Wea. Rev., 112, 22530–4.2.0.CO;2>CrossRefGoogle Scholar
Overland, J. E. and Walter, B. A. Jr. (1981) Gap winds in the Strait of San Juan de Fuca. Mon. Wea. Rev., 109, 2221–33.2.0.CO;2>CrossRefGoogle Scholar
Pagliuca, S. (1934) Winds of superhurricane force, and a heated anemometer for their measurement during ice-forming conditions. Mon. Wea. Rev., 62, 186–9.2.0.CO;2>CrossRefGoogle Scholar
Pepin, N., Benham, D. and Taylor, K. (1999) Modeling lapse rates in the maritime uplands of northern England: Implications for climate change. Arct. Antarct.Alp. Res., 31, 151–64.CrossRefGoogle Scholar
Pepin, N., et al. (2005) A comparison of SNOTEL and GHCN/CRU surface temperatures with free-air temperatures at high elevations in the western United States: Data compatibility and trends. J Climate, 18(12), 1967–85.CrossRefGoogle Scholar
Peppler, W. (1931) Zur Frage des Temperaturunterschiedes zwischen den Berggipfeln und der freien Atmosphäre. Beitr. Phys. frei. Atmos., 17, 247–63.Google Scholar
Peppler, W. (1935) Ergänzung zu meiner Arbeit: “Zur Frage des Temperaturunters-chiedes zwischen den Berggipfeln und der freien Atmosphäre”. Beitr. Phys. frei. Atmos., 21, 172–76.Google Scholar
Peterson, E. B. (1969) Radiosonde data for characterization of a mountain environment in British Columbia. Ecology, 50, 200–5.CrossRefGoogle Scholar
Pfeiffer, T., Koepke, P. and Reuder, J. (2006) Effects of altitude and aerosol on UV radiation. J. Geophys. Res., 111(D1), D01203, 1–11.CrossRefGoogle Scholar
Philipona, R., Marty, C. and Froehlich, C. (1996) Measurement of the longwave radiation budget in the Alps. In Smith, W. and Stamnes, K. (eds), Current Problems in Atmospheric Radiation. Hampton, VA: A. Deepak Publishing, pp. 786–9.Google Scholar
Piazena, H. (1996) The effect of altitude upon the solar UV-B and UV-A irradiance in the tropical Chilean Andes. Solar Energy, 57, 133–40.CrossRefGoogle Scholar
Pope, J. H. (1977) Computations of solar insolation at Boulder, Colorado. Washington, DC: NOAA Tech. Mem., NESS 93.
Prohaska, F. (1970) Distinctive bioclimatic parameters of the subtropical-tropical Andes. Int. J. Biomet., 14, 1–12.CrossRefGoogle Scholar
Ramachandran, G. (1972) The role of orography on wind and rainfall distribution in and around a mountain gap: an observational study. Ind. J. Met. Geophys., 23, 41–4.Google Scholar
Ramachandran, G., Rao, K. V. and Krishna, K. (1980) An observational study of the boundary-layer winds in the exit region of the mountain gap. J. appl. Met., 19, 881–8.2.0.CO;2>CrossRefGoogle Scholar
Rao, G. V. and Erdogan, S. (1989) The atmospheric heat source over the Bolivian Plateau for a mean January. Boundary-Layer Met., 46, 13–33.CrossRefGoogle Scholar
Rathschuler, E. (1949) Über die Änderung des Tagesganges der Luftfeuchtigkeit mit der Höhe. Arch. Met. Geophys. Biokl., B1, 17–31.Google Scholar
Reed, T. R, (1931) Gap winds in the Strait of San Juan de Fuca. Mon. Wea. Rev., 59, 373–6.2.0.CO;2>CrossRefGoogle Scholar
Reid, S. (1996) Pressure gradients and winds in Cook Strait. Wea. Forecasting 11, 476–88.2.0.CO;2>CrossRefGoogle Scholar
Reisner, J. M. and Smolarkiewicz, P. K. (1994) Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51, 117–33.2.0.CO;2>CrossRefGoogle Scholar
Reitan, C. H. (1963) Surface dew point and water vapor aloft. J. appl. Met., 2, 776–9.2.0.CO;2>CrossRefGoogle Scholar
Reiter, E. R. (1963) Jet-stream Meteorology. Chicago: University of Chicago Press.Google Scholar
Reiter, E. R. and Tang, M. (1984) Plateau effects on diurnal circulation patterns. Mon. Wea. Rev., 112, 638–51.2.0.CO;2>CrossRefGoogle Scholar
Reiter, R., Carnuth, W. and Sladkovic, R. (1972) Ultraviolettstrahlung in alpinen Höhenlagen. Wetter u. Leben, 24, 231–47.Google Scholar
Reiter, R., Mungert, K. and Sladovic, R. (1982) Results of 5-year concurrent recordings of global, diffuse and UV radiation at three levels (700, 1800, and 3000 m a.s.l.) in the northern Alps. Arch. Met. Geoph. Biokl., B30, 1–28.Google Scholar
Resler, L. M., Butler, D. R. and Malanson, G. P. (2005) Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Phys. Geog., 26, 112–25.CrossRefGoogle Scholar
Revfeim, K. J. A. (1976) Solar radiation at a site on known orientation on the earth's surface. J. appl. Met., 15, 651–6.2.0.CO;2>CrossRefGoogle Scholar
Richner, H. and Phillips, P. D. (1984) A comparison of temperature from mountaintops and the free atmosphere – their diurnal variation and mean difference. Mon. Wea. Rev., 112, 1328–40.2.0.CO;2>CrossRefGoogle Scholar
Richter, M. (2000) A hypothetical framework for testing phytodiversity in mountainous regions: the influence of airstreams and hygrothermic conditions. Phytocoenologia 30, 519–42.CrossRefGoogle Scholar
Rolland, C. (2003) Spatial and seasonal variations in air temperature lapse rates in Alpine regions. J, Climate, 16(7): 1032–46.2.0.CO;2>CrossRefGoogle Scholar
Ross, A. N. and Vosper, S. B. (2005) Neutral turbulent flow over forested hills. Q. J. R. Met.Soc., 131 (609), 1841–62.CrossRefGoogle Scholar
Salmon, J. H., et al. (1988) The Askervein Hill Project: Mean wind variations at fixed heights above ground. Boundary-Layer Met., 43, 247–71.CrossRefGoogle Scholar
Samson, C. A. (1965) A comparison of mountain slope and radiosonde observations. Mon. Wea. Rev., 95, 327–30.2.3.CO;2>CrossRefGoogle Scholar
Sauberer, F. and Dirmhirn, I. (1958) Das Strahlungsklima. In Steinhauser, F., Eckel, O., and Lauscher, F. (eds), Klimatographie von Osterreich. Vienna: Springer, pp. 13–102.CrossRefGoogle Scholar
Schell, I. I. (1936) On the vertical distribution of wind velocity over mountain summits. Bul. Am. Met. Soc., 17, 295–300.Google Scholar
Schönenberger, W. (1975) Standortseinflüsse auf Versuchsaufforstungen an des alpinen Waldgrenze. Mit Schweiz Anst. forstl. Versuch., 51(4), 358–428.Google Scholar
Schüepp, W. (1949) Die Bestimmung der Komponenten der atmosphärischen Trübung aus Aktinometermessungern. Arch. Met. Geophys. Biokl., B 1, 257–346.CrossRefGoogle Scholar
Schumacher, C. (1923) Der Wind in der freien Atmosphäre und auf Säntis, Zupgspitze und Sonnblick. Beitr. Phys. frei Atmos., 11, 20–42.Google Scholar
Schwander, H., et al. (2002) Modification of spectral UV irradiance by clouds. J. Geophys. Res., 107(D16), AAC 7.1–7.12.CrossRefGoogle Scholar
Schwind, M. (1952) Mikroklimatische Beobachtungen am Wutaischan. Erdkunde, 6, 44–5.CrossRefGoogle Scholar
Scorer, R. S. (1955) Theory of airflow over mountains. IV. Separation of flow from the surface. Q. J. R. Met. Soc., 81, 340–50.CrossRefGoogle Scholar
Scorer, R. S. (1978) Environmental Aerodynamics. Chichester: Ellis Horwood.Google Scholar
Sellers, W. D. (1965) Physical Climatology. Chicago: University of Chicago Press.Google Scholar
Sheppard, P. A. (1956) Airflow over mountains. Q. J. R. Met. Soc., 82, 528–9.CrossRefGoogle Scholar
Sivkov, S. I. (1971) Computation of Solar Radiation Characteristics. Leningrad: Gidromet, Izdat. Jerusalem: Israel Prog. Sci. Translations.Google Scholar
Skartveit, A. and Olseth, J. A. (1986) Modeling slope irradiance at high latitudes. Solar Energy, 36(4), 333–41.CrossRefGoogle Scholar
Smith, E. A. and Shi, L. (1996) Reducing discrepancies in atmosphere heat budget of Tibetan Plateau by satellite-based estimates of radiative cooling and cloud-radiation feedback. Met. Atmos. Phys., 56, 229–60.CrossRefGoogle Scholar
Smith, R. B. (1979) The influence of mountains on the atmosphere. Adv. Geophys., 21, 87–230.CrossRefGoogle Scholar
Smith, R. B. (1980) Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348–64.CrossRefGoogle Scholar
Smith, R. B. (1990) Why can't stably stratified air rise over high ground? In Blumen, W. (ed.), Atmospheric Processes over Complex Terrain, Met. Monogr. 23(45). Boston, MA: American Meteorological Society, pp. 105–7.Google Scholar
Snyder, W. H., et al. (1985) The structure of strongly stratified flow over hills: Dividing streamline concept. J. Fluid Mech., 52, 249–88.CrossRefGoogle Scholar
Sokratov, S. A. and Barry, R. G. (2002) Intraseasonal variation in the thermoinsulation effect of snow cover on soil temperatures and energy balance. J. Geophys. Res., 107(D10): ACL 13.1–13.7, (correction, ibid., 107(D19), ACL, 3.1).CrossRefGoogle Scholar
Sprenger, M. and Schär, C. (2001) Rotational aspects of stratified gap flows and shallow föhn. Q. J. R. Met. Soc., 127(571), 161–87.CrossRefGoogle Scholar
Steenburgh, W. J., Schultz, D. M. and Colle, B. A. (1998) The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126(10), 2673–91.2.0.CO;2>CrossRefGoogle Scholar
Steinacker, R., et al. (2006) A mesoscale data analysis and downscaling method over complex terrain. Mon. Wea. Rev., 134(10), 2758–71.CrossRefGoogle Scholar
Steinhauser, F. (1936) Uber die Haufigkeitsverteilungen des Dampfdruckes in Gebirge und in der Niederung und ihre Beziehungen zueinander. Met. Zeit., 53, 415–19.Google Scholar
Steinhauser, F. (1937) Uber die täglichen Temperaturschwankungen im Gebirge. Gerlands Beitr. Geophys., 50, 360–7.Google Scholar
Steinhauser, F. (1938) Die Meteorologie des Sonnblicks. I. Beiträge zur Hochgebirgs-meteorologie, Vienna: J. Springer.CrossRefGoogle Scholar
Steinhauser, F. (1939) Die Zunahme der Intensität der direkten Sonnenstrahlung mit der Höhe im Alpengebiet und die Verteilung der “Trubung” in den unterer Luftschichten. Met. Zeit., 56, 173–81.Google Scholar
Steven, M. D. (1977) Standard distributions of clear sky radiance. Q. J. R. Met. Soc., 103, 457–65.CrossRefGoogle Scholar
Steven, M. D. and Unsworth, M. H. (1979) The diffuse solar irradiance of slopes under cloudless skies. Q. J. R. Met Soc., 105, 593–602.CrossRefGoogle Scholar
Storr, D. (1970) A comparison of vapour pressure at mountain stations with that in the free atmosphere, Can Met. Res. Rep., 1/70, Dept. of Transport, Canada.Google Scholar
Stringer, E. T. (1972) Foundations of Climatology. San Francisco: W. H. Freeman and Co., pp. 141–67.Google Scholar
Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Tabony, R. C. (1985a) Relations between minimum temperature and topography in Great Britain. J. Climatol., 5, 503–20.CrossRefGoogle Scholar
Tabony, R. C. (1985b) The variation of surface temperature with altitude. Met. Mag., 114, 37–48.Google Scholar
Tampieri, F. (1987) Separation features of boundary-layer flow over valleys. Boundary-Layer Met., 40, 295–307.CrossRefGoogle Scholar
Tampieri, F. and Hunt, J. C. R. (1985) Two-dimensional stratified fluid flow over valleys: linear theory and a laboratory investigation. Boundary-Layer Met., 32, 257–79.CrossRefGoogle Scholar
Tang, M. and Reiter, E. R. (1984) Plateau monsoons of the northern hemisphere: a comparison between North America and Tibet. Mon. Wea. Rev., 112, 617–37.2.0.CO;2>CrossRefGoogle Scholar
Taylor, P. A. (1977) Numerical studies of neutrally stratified planetary boundary-layer flow above gentle topography. I. Two-dimensional cases. Boundary-Layer Met., 12, 37–60.CrossRefGoogle Scholar
Taylor, P. A. and Lee, R. A. (1984) Simple guidelines for estimating wind speed variations due to small-scale topographic features. Climatol. Bull. Ottawa, 18, 3–32.Google Scholar
Taylor, P. A., Mason, P. J. and Bradley, E. F. (1987) Boundary-layer flow over low hills. Boundary-Layer Met., 39, 107–32.CrossRefGoogle Scholar
Taylor, P. A., Sykes, R. I. and Mason, P. J. (1989) On the parameterization of drag over small-scale topography in neutrally-stratified boundary layer flow. Boundary-Layer Met., 48, 409–22.CrossRefGoogle Scholar
Temps., R. C. and Coulson, K. L. (1977) Solar radiation incident upon slopes of different orientation. Solar Energy, 19, 179–84.CrossRefGoogle Scholar
Teunissen, H. W., et al. (1987) The Askervein Hill Project: Wind-tunnel simulations at three length scales. Boundary-Layer Met., 40, 1–29.CrossRefGoogle Scholar
Thams, J. C. (1961a) The influence of the Alps on the radiation climate. In Recent Progress in Photobiology, Proc. 3rd Int. Congress. New York: Elsevier, pp. 76–91.Google Scholar
Thams, J. C. (1961b) Der Einfluss der Bewölkungsmenge und art auf die Grösse der diffusen Himmelstrahlung. Geof. pura appl., 48, 181–92.CrossRefGoogle Scholar
Thompson, W. F. (1990) Climate related landscapes in world mountains: Criteria and map. Zeit. f. Geomorph., Suppl. 78, 92 pp.Google Scholar
Troll, C. (1964) Karte der Jahreszeitenklimate der Erde. Erdkunde, 18, 5–28.CrossRefGoogle Scholar
Trombetti, F. and Tampieri, F. (1987) An application of the dividing-streamline concept to the stable airflow over mesoscale mountains. Mon. Wea. Rev., 115, 1802–6.2.0.CO;2>CrossRefGoogle Scholar
Turner, H. (1958) Maximal Temperaturen oberflächennaher Bodenschichten an der alpinen Waldgrenze. Wetter u. Leben, 10, 1–12.Google Scholar
Turner, H. (1966) Die globale Hangbestrahlung als Standortsfaktor bei Aufforstungen in der subalpinen Stufe. Mitt. Schweiz. Anst. forstl. Versuch., 42(3), 109–68.Google Scholar
Turner, H. (1980) Types of microclimate at high elevations. In Benecke, U. and Davis, M. R. (eds), Mountain Environments and Subalpine Tree Growth. Wellington: Technical Paper No. 70, Forest Research Institute, New Zealand Forest Service, pp. 21–6.Google Scholar
Turner, H., Rochat, P. and Streule, A. (1975) Thermische Charakteristik von Hauptstandortstypen im Bereich der oberen Waldgrenze (Stillberg, Dischmatal bei Davos). Mitt. Eidgenöss. Anst. forstl. Versuch., 51, 95–119.Google Scholar
Valko, P. (1961) Untersuchung über die vertikal Trübungsschlichtung der Atmosphäre. Arch. Met. Geophys. Biokl., 11, 148–210.CrossRefGoogle Scholar
Valko, P. (1980) Some empirical properties of solar radiation and related parameters. In An Introduction to Meteorological Measurements and Data Handling for Solar Energy Applications, Chapter 8, DOE/ER-0084. Washington, DC: US Dept. of Energy.Google Scholar
Varley, M. J., Beven, K. and Oliver, H. R. (1996) Modeling solar radiation in steeply sloping terrain. Int. J. Climatol., 16, 93–104.3.0.CO;2-T>CrossRefGoogle Scholar
Voloshina, A. P. (1966) Teplovoi balans poverkhnosti vysokogornykh lednikov v letnii period. (The energy balance of high mountain glaciers in summer). Moscow: Izdat. Nauka.Google Scholar
Mühl, Vonder D. and Permafrost Coordination Group of the SAS (1999) Permafrost – distribution and particular aspects. In Hydrologic Atlas of Switzerland, Plate 3.9. Bern: Bundesamt Wasser u. Geologie.Google Scholar
Vosper, S. B. and Mobbs, S. D. (1997) Measurement of the pressure field on a mountain. Q. J. R. Met. Soc., 123, 129–44.CrossRefGoogle Scholar
Vosper, S. B., Mobbs, S. D. and Gardiner, B. A. (2002) Measurements of the near-surface wind field over a hill. Q. J. R. Met. Soc., 128, 2257–80.CrossRefGoogle Scholar
Wade, J. E. and Hewson, E. W. (1979) Trees as a local climatic wind indicator. J. appl. Met., 18, 1182–7.2.0.CO;2>CrossRefGoogle Scholar
Wahl, E. (1966) Windspeed on Mountains. Final Report AFCRL–66–280. Milwaukee, WI: Meteorology Dept., University of Wisconsin.Google Scholar
Walmsley, J. L., Taylor, P. A. and Salmon, J. R. (1989) Simple guidelines for estimating wind speed variations due to small-scale topographic features – an update. Climatol. Bull., 23, 3–14.Google Scholar
Wardle, P. (1974) Alpine timberlines. In Ives, J. D. and Barry, R. G. (eds), Arctic and Alpine Environments. London: Methuen, pp. 371–402.Google Scholar
Wendler, G. and Ishikawa, N. (1974) The effect of slope exposure and mountain screening on the solar radiation of McCall Glacier, Alaska: a contribution to the International Hydrological Decade. J. Glaciol., 13(68), 213–26.CrossRefGoogle Scholar
Wessely, E. (1969) Messung der UV-Strahlung mit Interferenzfilter und Photoelementen bei.332μm. Ph.D. dissertation, University of Vienna.
Williams, L. D., Barry, R. G. and Andrews, J. T. (1972) Application of computed global radiation for areas of high relief. J. appl. Met., 11, 526–33.2.0.CO;2>CrossRefGoogle Scholar
Williams, P. J. and Smith, M. W. (1989) The Frozen Earth. Fundamentals of Geocryology. Cambridge: Cambridge University Press, 306 pp.CrossRefGoogle Scholar
Wilson, H. P. (1968) Stability Waves. Toronto: Dept. of Transport, Met. Branch, TEC703.Google Scholar
Wilson, H. P. (1974) A note on mesoscale barriers to surface airflow, Atmosphere, 12, 118–20.Google Scholar
Wilson, R. G. and Garnier, B. J. (1975) Calculated and measured net radiation for a slope. Climat. Bull, Montreal, 17, 1–14.Google Scholar
Winstral, A., Elder, K. and Davis, R. E. (2002) Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J. Hydromet., 3, 524–38.2.0.CO;2>CrossRefGoogle Scholar
Wooldridge, G. L., Fox, D. G. and Furman, R. W. (1987) Airflow patterns over and around a large three-dimensional hill. Met. Atmos. Phys., 37, 259–70.CrossRefGoogle Scholar
World Meteorological Organization, Secretariat (1981) Meteorological Aspects of the Utilization of Wind as an Energy Source, Technical Note No. 75, WMO no. 575. Geneva: WMO.
Xie, S.-P., et al. (2005) Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 5–20.CrossRefGoogle Scholar
Yeh, D.-Z. (1982) Some aspects of the thermal influences of Qinghai–Tibetan plateau on the atmospheric circulation. Arch. Met. Geophys. Biocl., A31, 205–20.CrossRefGoogle Scholar
Yoshino, M. M. (1966) Some aspects of air temperature climate of the high mountains in Japan. Jap. Progr. Climat., November, 21–7.Google Scholar
Yoshino, M. M. (1973) Studies on wind-shaped trees: their classification, distribution and significance as a climatic indicator. Climat. Notes, 12, 1–52.Google Scholar
Yoshino, M. M. (1975) Climate in a Small Area. Tokyo: University of Tokyo Press, pp. 445–59.Google Scholar
Zaitchik, B. F., Evans, J. P. and Smith, R. B. (2007) Regional impact of an elevated heat source: The Zagros Plateau of Iran. J. Climate, 20(16), 4133–46.CrossRefGoogle Scholar
Zängl, G. (2002) Stratified flow over a mountain with a gap: linear theory and numerical simulation. Q. J. R. Met. Soc., 128(581), 927–49.CrossRefGoogle Scholar
Zekser, K., Podobnikar, T. and Ostir, K. (2005) Solar radiation modelling. Computers and Geoscience, 31, 233–40.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×