Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T09:48:46.031Z Has data issue: false hasContentIssue false

4 - Climatic characteristics of mountains

Published online by Cambridge University Press:  20 May 2010

Roger G. Barry
Affiliation:
University of Colorado, Boulder
Get access

Summary

The basic factors and processes affecting mountain climate have been discussed in Chapters 2 and 3. When climatic elements such as temperature or precipitation are considered, their temporal and spatial characteristics in mountain areas are inevitably determined by the total complex of these factors – latitude, continentality, altitude and topography – operating together. In this chapter, therefore, some general climatic characteristics of mountain areas are examined for individual climatic elements. We begin by considering energy budgets and slope temperature profiles. This is followed by a discussion of cloudiness, precipitation, other hydrometeors, and evaporation. The ways in which altitudinal and topographic effects, in particular, interact to create orographic patterns in the spatial and temporal distribution of each climatic element are illustrated.

ENERGY BUDGETS

It was noted in Chapter 2 that mountain sites were of special importance to early research on solar radiation, but there has been a general lack of modern radiation and energy budget studies in the mountains. An adequate level of information on the spatial and temporal distribution of radiation exists only for the European Alps. This material provided the basis for the generalizations on altitudinal effects presented in Chapter 2 (pp. 34–51) and all that can be usefully added here is to illustrate the types of work carried out in a few other mountain areas and some of the findings.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J., et al. (2006) Correction of global precipitation for orographic effects. J. Climate, 19, 15–38.CrossRefGoogle Scholar
Aizenshtat, B. A. (1962) Nekotorye cherty radiatsonnogo rezhima, teplogo balansa, mikroklimata gornogo perevala (Some characteristics of the radiation regime, heat balance and microclimate of a mountain pass). Met. Gidrol., 3, 273–82.Google Scholar
Alexeiev, J. K., Dalyrymple, P. C. and Gerger, H. (1974) Instrument and Observing Problems in Cold Climates. Geneva: World Meteorological Organization, No. 384.Google Scholar
Alford, D. (1985) Montain hydrologic systems. Mountain Res. Devel., 5, 349–63.CrossRefGoogle Scholar
Alpert, P. (1986) Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Clim. Appl. Met., 25, 532–45.2.0.CO;2>CrossRefGoogle Scholar
Alter, J. C. (1937) Shielded storage precipitation gages. Mon. Weather Rev., 65, 262–5.2.0.CO;2>CrossRefGoogle Scholar
Anderl, B., Altmanspacker, W. and Schultz, G. A. (1976) Accuracy of reservoir inflow measurements based on radar rainfall measurements. Water Resources Res., 12, 217–23.CrossRefGoogle Scholar
Anders, A. M., Roe, G. H. and Durran, D. R. (2004) Conference notebook orographic precipitation and the form of mountain ranges. Bull. Amer. Met. Soc., 85, 498–9.Google Scholar
Andersson, T. (1980) Bergeron and the oreigenic (orographic) maxima of precipitation. Pure Appl. Geophys., 119, 558–76.CrossRefGoogle Scholar
Armstrong, C. F. and Stidd, C. K. (1967) A moisture-balance profile in the Sierra Nevada. J. Hydrol., 5, 252–68.CrossRefGoogle Scholar
Atkinson, B. W. and Smithson, P. A. (1976) Precipitation. In Chandler, T. J. and Gregory, S. (eds), The Climate of the British Isles. London: Longman, pp. 129–82.Google Scholar
Aulitsky, H. (1967) Lage und Ausmass der “warmen Hangzone” in einen Quertal der Innenalp. Ann. Met., 3, 159–65.Google Scholar
Banta, R. M. (1990) The role of mountain flows in making clouds. Atmospheric processes over complex terrain. Meteorol. Monogr., 23(45), 229–83.Google Scholar
Baranowski, S. and Liebersbach, J. (1977) The intensity of different kinds of rime on the upper tree line in the Sudety Mountains. J. Glaciol., 19, 489–97.Google Scholar
Barry, R. G. (1973) A climatological transect along the east slope of the Front Range. Colorado. Arct. Alp. Res., 5, 89–110.CrossRefGoogle Scholar
Barry, R. G. and Chorley, R. J. (2003) Atmosphere, Weather and Climate, 8th edn. London: Routledge, 421 pp.Google Scholar
Barstad, I. and Smith, R. B. (2005) Evaluation of an orographic precipitation model. J. Hydromet., 6, 85–95.CrossRefGoogle Scholar
Basist, A., Bell, G. D. and Meentemeyer, V. (1994) Statistical relationships between topography and precipitation patterns. J. Climate, 7(9), 1305–15.2.0.CO;2>CrossRefGoogle Scholar
Baumgartner, A. (1960–2) Die Lufttemperatur als Standortsfaktor am Grossen Falkenstein, 1. Forstwiss. Centralblatt, 79, 362–73; 2. Forstwiss. Centralblatt, 80, 107–20; 3. Forstwiss. Centralblatt, 81, 17–47.CrossRefGoogle Scholar
Baumgartner, A., Reichel, E. and Weber, G. (1983) Der Wasserhaushalt der Alpen. Munich: Oldenbourg.Google Scholar
Beaty, C. B. (1975) Sublimation or melting: observations from the White Mountains, California, and Nevada, U.S.A. J. Glaciol., 14(71), 275–86.CrossRefGoogle Scholar
Benizou, P. (1989) Taking topography into account for network optimization in mountainous areas. In Sevruk, B. (ed.), Precipitation Measurement, WMO/IAHS/ETH Workshop on Precipitation Measurement. Zurich: Swiss Federal Institute of Technology, pp. 307–12.Google Scholar
Berg, N. (1986) Blowing snow at a Colorado alpine site: Measurements and implications. Arctic Alpine Res., 18, 147–61.CrossRefGoogle Scholar
Berg, N. H. (1988) Mountain-top riming at sites in California and Nevada, U.S.A. Arct. Alp. Res., 20, 429–47.CrossRefGoogle Scholar
Berg, N. and Caine, N. (1975) Prediction of natural snowdrift accumulation in alpine areas, Final Report to Rocky Mountain Forest and Range Expt. Station (USFS 16–388-CA). Boulder, CO: Department of Geography, University of Colorado.
Bergen, J. D. and Swanson, R. H. (1964) Evaporation from a winter snow cover in the Rocky Mountain forest zone. In Proc. 32nd Western Snow Conference, pp. 52–8.Google Scholar
Bergeron, T. (1949) Problem of artificial control of rainfall on the globe. Tellus, 1, 32–43.CrossRefGoogle Scholar
Bergeron, T. (1960) Problems and methods of rainfall investigation. In The Physics of Precipitation. Geophysical Monograph No. 5. Washington, DC: American Geophysical Union, pp. 5–30.Google Scholar
Bergeron, T. (1961) Preliminary results of Project Pluvius. International Association of Scientific Hydrology, Publication No. 53, pp. 226–37.Google Scholar
Berkovsky, L. (1964) The fall-off with height of terrain-induced vertical velocity. J. appl. Met., 3, 410–14.2.0.CO;2>CrossRefGoogle Scholar
Berndt, H. W. and Fowler, B. W. (1969) Rime and hoarfrost in upper-slope forests of eastern Washington. J. Forestry, 67, 92–5.Google Scholar
Betterton, M. D. (2001) Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt comes. Phys. Rev., E, 63, 056129, 1–12.CrossRefGoogle Scholar
Bintanja, R. (2001) Snowdrift sublimation in a katabatic wind region of the Antarctic Ice Sheet. J. appl. Met., 40(11), 1952–66.2.0.CO;2>CrossRefGoogle Scholar
Bleasdale, A. and Chan, Y. K. (1972) Orographic influences on the distribution of precipitation. In The Distribution of Precipitation in Mountainous Areas, Vol. II. Geneva: World Meteorological Organization no. 326, pp. 322–33.Google Scholar
Bonacina, L. C. W. (1945) Orographic rainfall and its place in the hydrology of the globe. Q. J. R. Met. Soc., 71, 41–55.Google Scholar
Borzenkova, I. I. (1965) K metodike rascheta summarnoy radiatsii dlya uslovii gornogo plato. [The calculation of radiation total for mountain plateau conditions] Trudy Glav. Geofiz. Obs., 179, 98–107.Google Scholar
Borzenkova, I. I. (1967) K voprosy o vliyanii mestnikh faktorov na prikhod radiastsii v gornoi mestnosti. [On the influence of local factors on the radiation receipts in mountain locations] Trudy Glav. Geofiz. Obs., 209, 70–7.Google Scholar
Bosch, J. M. and Hewlett, J. D. (1982) A review of catchment experiments to determine the effect of vegetation change on water yield and evapotranspiration. J. Hydrol., 55, 2–23.CrossRefGoogle Scholar
Bossert, J. E. and Cotton, W. R. (1994) Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 1449–71.2.0.CO;2>CrossRefGoogle Scholar
Braham, R. R. (1968) Meteorological bases for precipitation development. Bull. Amer. Met. Soc., 49, 343–53.CrossRefGoogle Scholar
Brazel, A. H. and Marcus, M. G. (1979) Heat exchange across a snow surface at 5365 meters, Mt. Logan, Yukon. Arct. Alp. Res., 11, 1–10.CrossRefGoogle Scholar
Brown, M. J. and Peck, E. L. (1962) Reliability of precipitation measurements as related to exposure. J. appl. Met., 1, 203–7.2.0.CO;2>CrossRefGoogle Scholar
Browning, K. A. (1980) Structure, mechanism and prediction of orographically enhanced rain in Britain. In Hide, R. and White, P. W. (eds), Orographic Effects in Planetary Flows, GARP Publication Series No. 23. Geneva: WMO-ICSU Joint Scientific Committee, World Meteorological Organization, pp. 85–114.Google Scholar
Browning, K. A. (1985) Conceptual models of precipitation systems. Wea. Forecasting, 1, 23–41.2.0.CO;2>CrossRefGoogle Scholar
Browning, K. and Harrold, T. W. (1969) Air motion and precipitation growth in a wave depression. Q. J. R. Met. Soc., 95, 288–309.CrossRefGoogle Scholar
Browning, K. A. and Hill, F. F. (1981) Orographic rain. Weather, 36, 326–9.CrossRefGoogle Scholar
Browning, K. A., Hill, F. F. and Pardoe, C. W. (1974) Structure and mechanism of precipitation and the effect of orography in a wintertime warm sector. Q. J. R. Met. Soc., 100, 309–30.CrossRefGoogle Scholar
Browning, K. A., Pardoe, C. W. and Hill, F. F. (1975) The nature of orographic rain at wintertime cold fronts. Q. J. R. Met. Soc., 101, 333–52.CrossRefGoogle Scholar
Brunsdon, C., McClatchey, J. and Unwin, D. J. (2001) Spatial variations in the average rainfall–altitude relationship in Great Britain: An approach using geographically-weighted regression. Int. J. Climatol., 21, 455–66.CrossRefGoogle Scholar
Bryson, R. A. and Kuhn, P. M. (1961) Stress-differential induced divergence with application to littoral precipitation. Erdkunde, 15, 287–94.CrossRefGoogle Scholar
Buchan, A. (1890) The meteorology of Ben Nevis. Trans. R. Soc. Edin., 34, xvii–lxi.CrossRefGoogle Scholar
Budyko, M. I. (1974) Climate and Life. New York: Academic Press. 508 pp.Google Scholar
Caine, N. (1975) An elevational control of peak snowpack variability. Water Res. Bull., 11, 613–21.CrossRefGoogle Scholar
Calder, I. R. (1990) Evaporation in the Uplands. Chichester: J. Wiley and Sons.Google Scholar
Carruthers, D. J. and Choularton, T. W. (1983) A model of the seeder-feeder mechanism of orographic rain including stratification and wind-drift effects. Q. J. R. Met. Soc., 109, 575–88.Google Scholar
Catterall, J. W. (1972) An a priori model to suggest rain gauge domains. Area, 4, 158–63.Google Scholar
Cavelier, J. and Goldstein, G. (1989) Mist and fog interception in elfin cloud forests in Colombia and Venezuela. J. Trop. Ecol., 5, 309–22.CrossRefGoogle Scholar
Cherry, J. E., et al. (2005) Solid precipitation reconstruction using snow depth measurements and a land surface hydrology model. Water Resour. Res., 41(9), W09401.CrossRefGoogle Scholar
Chickering, J. W. Jr. (1884) Thermal belts. Am. Met. J., 1, 213–18.Google Scholar
Chidley, T. R. E. and Pike, J. G. (1970) A generalized computer program for the solution of the Penman equation for evapotranspiration. J. Hydrol., 10, 75–89.CrossRefGoogle Scholar
Chuan, G. K. and Lockwood, J. G. (1974) An assessment of the topographic controls on the distribution of rainfall in the central Pennines. Met. Mag., 103, 275–87.Google Scholar
Church, J. E. (1934) Evaporation at high altitudes and latitudes. Trans. Am. Geophys. Union, 15(2), 326–51.CrossRefGoogle Scholar
Cline, D. W. (1997) Snow surface energy exchanges and snowmelt at a continental midlatitude alpine site. Water Resour. Res., 33(4), 689–702.CrossRefGoogle Scholar
Collier, C. G. and Larke, P. R. (1978) A case study of the measurement of snowfall by radar: an assessment of accuracy. Q. J. R. Met. Soc., 104, 615–21.CrossRefGoogle Scholar
Colton, D. E. (1976) Numerical simulation of the orographically induced precipitation distribution for use in hydrologic analysis. J. appl. Met., 15, 1241–51.2.0.CO;2>CrossRefGoogle Scholar
Conrad, V. (1935) Beiträge zur Kenntnis der Schneedeckenverhältnisse. Gerlands Beitr. Geophys., 45, 225–36.Google Scholar
Cosma, S., Richard, E. and Miniscloux, F. (2002) The role of small-scale orographic features in the spatial distribution of precipitation. Q. J. R. Met. Soc., 128, 75–92.CrossRefGoogle Scholar
Costin, A. B. and Wimbush, D. J. (1961) Studies in catchment hydrology in the Australian Alps, IV. Interception by trees of rain, cloud and fog. Canberra: C.S.I.R.O., Australia Division of Plant Industry, Technical Paper 16.
Cotton, W. R., et al. (1983) A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111, 1893–918.2.0.CO;2>CrossRefGoogle Scholar
Cox, H. J. (1923) Thermal belts and fruit growing in North Carolina. Mon. Wea. Rev., Suppl., 19.Google Scholar
Cressie, N. A. C. (1993) Statistics for Spatial Data. Hoboken, NJ: Wiley.Google Scholar
Daly, C., Nelson, R. P. and Phillips, D. L. (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. appl. Met., 33, 140–58.2.0.CO;2>CrossRefGoogle Scholar
Danard, M. B. (1971) A simple method for computing the variation of annual precipitation over mountainous terrain. Boundary-Layer Met., 2, 41–55.CrossRefGoogle Scholar
Deems, J. S., Fassnacht, S. R. and Elder, K. J. (2006) Fractal distribution of snow depth from lidar data. J. Hydromet., 7, 285–97.CrossRefGoogle Scholar
Jong, C. (2005) The contribution of condensation to the water cycle under high-mountain conditions. Hydrol. Processes, 19, 2419–35.CrossRefGoogle Scholar
de Jong, C., Mundelius, M. and Migala, K. (2005) Comparison of evapotranspiration and condensation measurements between the Giant Mountains and the Alps. In Jong, C., Collins, D. M. and Ranzi, R. (eds), Climate and Hydrology in Mountain Areas. New York: J. Wiley and Sons, pp. 161–3.CrossRefGoogle Scholar
Quervain, M. R. (1951) Zur Verdunstung der Schneedecke. Arch. Met. Geophys. Biokl., B 3, 47–64.CrossRefGoogle Scholar
Déry, S. J. and Yau, M. K. (2002) Large-scale mass balance effects of blowing snow and surface sublimation. J. Geophys. Res., 107 (D23), 4679 ACL 8-1–8-17.CrossRefGoogle Scholar
Dettinger, M., Redmond, K. and Cayan, D. (2004) Winter orographic precipitation rates in the Sierra Nevada – large-scale atmospheric circulations and hydrologic consequences. J. Hydromet., 5, 1102–16.CrossRefGoogle Scholar
Diem, M. (1955) Höchstlasten der Nebelfrostablagerungen am Hochspannungsleitungen im Gebirge. Arch. Met. Geophys. Biokl., B 7, 84–95.CrossRefGoogle Scholar
Diodato, N. (2005) The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Int. J. Climatol., 25(3), 351–63.CrossRefGoogle Scholar
Douglas, C. K. M. and Glasspoole, J. (1947) Meteorological conditions in heavy orographic rainfall in the British Isles. Q. J. R. Met. Soc., 73, 11–38.CrossRefGoogle Scholar
Douguédroit, A. and Saintignon, F. F. (1970) Methode de l'étude de la dècroissance des temperatures en montagne de latitude moyenne: exemple des Alpes françaises du sud. Rev. Géog. Alp., 58, 453–72.CrossRefGoogle Scholar
Dreiseitl, E. (1988) Slope and free air temperatures in the Inn valley. Met. Atmos. Phys., 39, 25–41.CrossRefGoogle Scholar
Dunbar, G. S. (1966) Thermal belts in North Carolina. Geog. Rev., 56, 516–26.CrossRefGoogle Scholar
Dyunin, A. K. and Kotlyakov, V. M. (1980) Redistribution of snow in the mountains under the effect of heavy snow storms. Cold Regions Sci. Technol., 3, 287–94.CrossRefGoogle Scholar
Elder, K., Dozier, J. and Michaelsen, J. (1989) Spatial and temporal variation of net snow accumulation in a small alpine watershed, Emerald Lake basin, Sierra Nevada, California. Ann. Glaciol., 13, 56–63.CrossRefGoogle Scholar
Elliott, R. D. (1977) Methods for estimating areal precipitation in mountainous areas. Report 77–13. Goleta, CA: North American Weather Consultants (for National Weather Service, NOAA-77-111506) (NTIS:PB-276 140/IGA).
Elliott, R. D. and Shaffer, R. W. (1962) The development of quantitative relationships between orographic precipitation and air-mass parameters for use in forecasting and cloud seeding evaluation. J. appl. Met., 1, 218–28.2.0.CO;2>CrossRefGoogle Scholar
Erickson, T. A., Williams, M. W. and Winstral, A. (2005) Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resour. Res., 41, W04014, 17 pp.CrossRefGoogle Scholar
Erk, F. (1887) Die vertikale Verteilung und die Maximalzone des Neiderschlags am Nordhange der bayrischen Alpen im Zeitraum November 1883 bis November 1885. Met. Zeit., 4, 55–69.Google Scholar
Essery, R. (2001) Spatial statistics of windflow and blowing-snow fluxes over complex topography. Boundary-Layer Met., 100, 131–47.CrossRefGoogle Scholar
Essery, R., Li., L. and Pomeroy, J. (1999) A distributed model of blowing snow over complex terrain. Hydrol. Processes, 13 (14–15), 2423–38. Sublimation and blowing snow transport at six sites in the conterminous United States. Proc. 61st Annual Western Snow Conference (Portland, OR), pp. 15–26.3.0.CO;2-U>CrossRefGoogle Scholar
Fassnacht, S. R. (2004) Estimation alter-shielded gauge snowfall undercatch, snowpack.Google Scholar
Flenley, J. R. (1994) Cloud Forest, the Massenerhebung Effect, and Ultraviolet Insolation. In Hamilton, L. S., Juvik, J. O. and Scatena, F. N. (eds), Tropical Montane Cloud Forests. New York: Springer-Verlag, pp. 150–5.Google Scholar
Fliri, F. (1967) Uber die klimatologische Bedeutung der Kondensationshöhe im Gebirge. Die Erde, 98, 203–10.Google Scholar
Fliri, F. (1975) Das Klima der Alpen im Raume von Tirol. Innsbruck: Universitãtsverlag Wagner.Google Scholar
Flohn, H. (1969) Zum Klima und Wasserhaushalt des Hindukushs und benachtbaren Gebirge. Erdkunde, 23, 205–15.CrossRefGoogle Scholar
Flohn, H. (1970) Comments on water budget investigations, especially in tropical and subtropical mountain regions. In Symposium on World Water Balance, pp. 251–62. IASH Publication, 93, Vol. 2. New York: UNESCO.Google Scholar
Flohn, H. (1974) Contribution to a comparative meteorology of mountain areas. In Ives, J. D. and Barry, R. G. (eds), Arctic and Alpine Environments. London: Methuen, pp. 55–71.Google Scholar
Fogarasi, S. (1972) Weather Systems and Precipitation Characteristics over the Arctic Archipelago in the Summer of 1968. Inland Waters Directorate. Technical Report No. 16. Ottawa: Environment Canada.Google Scholar
Föhn, P. M. B. (1977) Representativeness of precipitation measurements in mountainous areas. Proceedings of the Joint AMS/SGBB/SSG Meeting on Mountain Meteorology and Biometeorology. Geneva: Blanc et Wittwer, pp. 61–77.Google Scholar
Föhn, P. M. (1980) Snow transport over mountain crests. J. Glaciol., 26(94), 469–80.CrossRefGoogle Scholar
Föhn, P. and Meister, R. (1983) Distribution of snowdrifts on ridge slopes: measurements and theoretical approximations. Ann. Glaciol., 4, 52–7.CrossRefGoogle Scholar
Frére, M., Rijks, J. Q. and Rea, J. (1975) Estudio Agroclimatologico de la Zona Andina, Informe Technico. Rome: Food and Agricultural Organization of the United Nations.
Fu, B.-P. (1995) The effects of orography on precipitation. Boundary-Layer Met., 75, 189–205.Google Scholar
Fujita, T. (1967) Mesoscale aspects of orographic influences on flow and precipitation patterns. In Reiter, E. R. and Rasmussen, J. L. (eds), Proceedings of the Symposium on Mountain Meteorology, Atmospheric Science Paper No. 122. Fort Collins, CO: Colorado State University, pp. 131–46.Google Scholar
Fujita, T., Baralt, G. and Tsuchiya, J. (1968) Aerial measurement of radiation temperatures over Mt. Fuji and Tokyo areas and their application to the determination of ground- and water-surface temperatures. J. appl. Met., 7, 801–16.2.0.CO;2>CrossRefGoogle Scholar
Fulks, J. R. (1935) Rate of precipitation from adiabatically ascending air. Mon. Weather Rev., 63, 291–4.2.0.CO;2>CrossRefGoogle Scholar
Furman, R. W. (1978) Wildfire zones on a mountain ridge. Ann. Ass. Am. Geog., 68, 89–94.CrossRefGoogle Scholar
Gangopadhyaya, M., Harbeck, G. E. Jr., Nordenson, T. J., Omar, M. H. and Uryvaev, V. A. (1966) Measurement and Estimation of Evaporation and Evapotranspiration. Geneva: World Meteorological Organization Technical Note No. 83.Google Scholar
Gauer, P. (2005) Numerical modeling of blowing and drifting snow in Alpine terrain. J. Glaciol., 47(156), 97–110.CrossRefGoogle Scholar
Geiger, R. (1965) The Climate near the Ground. Cambridge, MA: Harvard University Press, pp. 417–18, 430–42, 453–4.Google Scholar
Geiger, R., Aron, A. H. and Todhunter, P. (2003) Climate near the Ground. Lanham, MD: Rowman and Littlefield, 584 pp.Google Scholar
Glazyrin, G. E. (1970) Fazovoe sostoyanie osadkov v gorakh v zavisimosti ot prizemnoy temperaturiy vozdukha (The phase condition of precipitation in mountains independence on surface air temperature). Met. i Gidrol., 30–4.Google Scholar
Glickman, T. S. (ed.) (2000) The Glossary of Meteorology, 2nd edn. Boston, MA: American Meteorological Society.Google Scholar
Golding, D. L. (1978) Calculated snowpack evaporation during chinooks along the eastern slopes of the Rocky Mountains. J. appl. Met., 17, 1647–51.2.0.CO;2>CrossRefGoogle Scholar
Golubev, V. S. (1986) On the problem of standard conditions for precipitation gauge installation. In Sevruk, B. (ed.), Proceedings, International Workshop on the Correction of Precipitation Measurements, Instruments and Observing Methods, Report no. 24 (WMO/TD no. 104). Geneva: World Meteorological Organization, pp. 57–9.Google Scholar
Goodin, D. G. and Isard, S. A. (1989) Magnitude and sources of variation in albedo within an alpine tundra. Theoret. Appl. Climatol., 40, 50–60.CrossRefGoogle Scholar
Goodison, B. E., Sevruk, B. and Klemm, S. (1989) WMO solid precipitation measurement intercomparison: objectives, methodology, analysis. In Delleur, J. W. (ed.), Atmospheric Deposition, International Association of Hydrological Sciences, Publication No. 179. Wallingford, UK: IAHS Press, pp. 59–64.Google Scholar
Goodison, B. E., Louie, P. Y. T. and Yang, D.-Q. (1998) WMO Solid Precipitation Intercomparison, WMO/TD-872. Geneva: World Meteorological Organization, 212 pp.Google Scholar
Goovaerts, P. (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228, 113–29.CrossRefGoogle Scholar
Greenland, D. (1978) Spatial distribution of radiation on the Colorado Front Range. Climat. Bull., Montreal, 24, 1–14.Google Scholar
Greenland, D. (1989) The climate of Niwot Ridge, Front Range, Colorado, USA. Arct. Alp. Res., 21, 380–91.CrossRefGoogle Scholar
Greenland, D. E. (1991) Surface energy budgets over alpine tundra in summer, Niwot Range, Colorado Front Range. Mountain Res. Devel., 11, 339–51.CrossRefGoogle Scholar
Greenland, D. (1993) Spatial energy budgets in alpine tundra. Theor. Appl. Clim., 46, 229–39.CrossRefGoogle Scholar
Gregory, S. (1968) The orographic component in rainfall distribution patterns. In Sporck, J. A. (ed.), Mélanges de Géographie. I. Géographie Physique et Géographie Humaine. Gembloux, Belgium: J. Duculot, S. A., pp. 234–52.Google Scholar
Grunow, J. (1952a) Nebelniederschlag: Bedeutung und Erfassung einer Zusatz- komponente des Niederschlags, Berichte deutsch. Wetterdienst.-US Zone, 7(42), 30–4.Google Scholar
Grunow, J. (1952b) Kritische Nebelfroststudien. Arch. Met. Geophys. Biokl., B 4, 389–419.Google Scholar
Grunow, J. (1960) Ergebnisse mehrjähriger Messungen von Niederschlägen am Hang und im Gebirge. International Association of Scientific Hydrology Publication No. 53, 300–16.Google Scholar
Grunow, J. and Tollner, H. (1969) Nebelniederschlag im Hochgebirge. Arch. Met. Geophys. Biokl., B 17, 201–28.CrossRefGoogle Scholar
Guan, H., Wilson, J. L. and Makhnin, O. (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J. Hydromet., 6, 1018–31.CrossRefGoogle Scholar
Hanson, C. L. (1982) Distribution and stochastic generation of annual and monthly precipitation on a mountainous watershed in southwest Idaho. Water Resour. Bull., 18, 875–83.CrossRefGoogle Scholar
Harrold, T. W. (1966) The measurement of rainfall using radar. Weather, 21, 247–9, 256–8.CrossRefGoogle Scholar
Hartman, M. D., et al. Simulations of snow distribution and hydrology in a mountain basin. Water Resour. Res., 35(8), 1587–604.CrossRef
Hastenrath, S. L. (1967) Rainfall distribution and regime in central America. Arch. Met. Geophys. Biokl., B 15, 201–41.CrossRefGoogle Scholar
Hastenrath, S. L. (1978) Heat-budget measurements on the Quelccaya ice cap, Peruvian Andes. J. Glaciol., 20(82), 85–97.CrossRefGoogle Scholar
Hauer, H. (1950) Klima und Wetter der Zugspitze. Berichte d. Deutschen Wetterdienstes in der US-Zone, 16.Google Scholar
Havlik, D. (1968) Die Höhenstufe maximaler Niederschlagssummen in den Westalpen. Freiburger Geogr. Hefte, 7.Google Scholar
Hay, L. E. and McCabe, G. J. (1998) Verification of the Rhea orographic-precipitation model. J.Amer. Water Assoc., 34, 1103–12.Google Scholar
Hennemuth, B. and Köhler, U. (1984) Estimation of the energy balance of the Dischma Valley. Arch. Met. Geophys. Biocl., B 34, 97–119.CrossRefGoogle Scholar
Hennessy, J. P. Jr. (1979) Comments on “Use of mesoscale climatology in mountainous terrain to improve the spatial representation of mean monthly temperatures.”Mon. Wea. Rev., 107, 352–3.2.0.CO;2>CrossRefGoogle Scholar
Henning, D. and Henning, D. (1981) Potential evapotranspiration in mountain geo-ecosystems of different altitudes and latitudes, Mountain Res. Devel., 1, 267–74.CrossRefGoogle Scholar
Henz, J. F. (1972) An operational technique of forecasting thunderstorms along the lee slope of a mountain range. J. appl. Met., 11, 1284–92.2.0.CO;2>CrossRefGoogle Scholar
Hess, M., Niedzwiedz, T. and Obrebska-Starkel, B. (1975) The methods of constructing climatic maps of various scales for mountainous and upland territories, exemplified by the maps prepared for southern Poland. Geog. Polonica, 31, 163–87.Google Scholar
Hill, F. F. (1983) The use of average annual rainfall to derive estimates of orographic enhancement of frontal rain over England and Wales for different wind directions. J. Climatol., 3, 113–29.CrossRefGoogle Scholar
Hill, F. F., Browning, K. A. and Bader, M. J. (1981) Radar and raingauge observations of orographic rain over south Wales. Q. J. R. Met. Soc., 107, 643–70.CrossRefGoogle Scholar
Hill, S. A. (1881) The meteorology of the North-West Himalaya. Ind. Met. Mem., Calcutta, 1(VI), 377–429.Google Scholar
Hindman, E. E. (1986a) An atmospheric water balance over a mountain barrier. In Xu, Y.-G. (ed.), Proceedings of the International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology. Beijing: Science Press, pp. 580–95.CrossRefGoogle Scholar
Hindman, E. E. (1986b) Characteristics of supercooled liquid water in clouds at mountaintop sites in the Colorado Rockies. J. Clim. Appl. Met., 25, 1271–9.2.0.CO;2>CrossRefGoogle Scholar
Hjermstad, L. M. (1970) The Influence of Meteorological Parameters on the Distribution of Precipitation across Central Colorado Mountains. Atmospheric Science Paper No. 163. Fort Collins, CO: Colorado State University.Google Scholar
Hjermstad, L. M. (1975) Final Comprehensive Operations Report 1970–75 Season. Colorado River Basin Pilot Project, EG & G (Report AL-1200), Albuquerque, New Mexico.
Hobbs, P. V. (1975) The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Pt. 1. Natural conditions, J. appl. Met., 14, 783–804.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V. (1978) Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16, 741–55.CrossRefGoogle Scholar
Hobbs, P. V., Easter, R. C. and Fraser, A. B. (1973) A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Pt. II: Microphysics. J. Atmos. Sci., 30, 813–23.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V., Houze, R. A. Jr. and Matejka, T. J. (1975) The dynamical and microphysical structure of an occluded frontal system and its modification by orography. J. Atmos. Sci., 32, 1542–62.2.0.CO;2>CrossRefGoogle Scholar
Holmboe, J. and Klieforth, H. (1957) Investigations of Mountain Lee Waves and the Air Flow over the Sierra Nevada, Final Report, Contract AF19-(604)-728. Los Angeles: Meteorology Department, University of California.CrossRefGoogle Scholar
Hood, E. W., Williams, M. W. and Cline, D. (1999) Sublimation from a seasonal snowpack at a continental, mid-latitude alpine site. Hydrol. Processes, 13, 1781–97.3.0.CO;2-C>CrossRefGoogle Scholar
Hoover, M. D. and Leaf, C. E. (1967) Process and significance of interception in Colorado subalpine forest. In Sopper, W. E. and Lull, H. W. (eds), Symposium on Forest Hydrology. Oxford: Pergamon Press, pp. 213–24.Google Scholar
Horton, R. E. (1934) Water losses in high latitudes and at high elevations. Trans. Am. Geophys. Union, 15(2), 351–79.CrossRefGoogle Scholar
Hosler, C. L., Davis, L. G. and Booker, D. R. (1963) Modification of convective systems by terrain with local relief of several hundred metres. Zeit. angew. Math. Phys., 14, 410–18.CrossRefGoogle Scholar
Houghton, J. G. (1979) A model for orographic precipitation in the north-central Great Basin. Mon. Weather Rev., 107, 1462–75.2.0.CO;2>CrossRefGoogle Scholar
Houze, R. A. Jr. and Medina, S. (2005) Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62(10), 3599–623.CrossRefGoogle Scholar
Hovkind, E. L. (1965) Precipitation distribution round a windy mountain peak. J. Geophys. Res., 70, 3271–8.CrossRefGoogle Scholar
Hrudicka, B. (1937) Zur Nebelfrosttage. Gerlands Beitr. Geophys., 51, 335–42.Google Scholar
Hutchison, B. A. (1966) A comparison of evaporation from snow and soil surfaces. Bull. Int. Ass. Sci. Hydrol., 11, 34–42.CrossRefGoogle Scholar
Hutchinson, P. (1968) An analysis of the effect of topography on rainfall in the Taieri catchment. Otago. Earth Sci. J., 2, 51–68.Google Scholar
Isard, S. A. and Belding, M. J. (1989) Evapotranspiration from the alpine tundra of Colorado, U.S.A. Arct. Alp. Res., 21, 71–82.CrossRefGoogle Scholar
Jackson, M. C. (1978) Snow cover in Great Britain. Weather, 33, 298–309.CrossRefGoogle Scholar
Jairell, R. L. (1975) An improved recording gage for blowing snow. Water Resour. Res., 11, 674–80.CrossRefGoogle Scholar
James, C. N. and Houze, R. A. Jr. (2005) Modification of precipitation by coastal orography in storms crossing northern California. Mon. Wea. Rev., 133(11), 3110–31.CrossRefGoogle Scholar
Jarvis, E. C. and Leonard, R. (1969) Vertical Velocities induced by Smoothed Topography for Ontario and their Use in Areal Forecasting. Meteorological Branch, Technical Memorandum 728. Toronto: Department of Transport.Google Scholar
Jevons, W. S. (1861) On the deficiency of rain in an elevated rain gauge as caused by wind, London. Edinburgh and Dublin Phil. Mag., 22, 421–33.CrossRefGoogle Scholar
Jiang, Q.-F. and Smith, R. B. (2003) Cloud timescales and orographic precipitation. J. Atmos. Sci., 60(13), 1543–59.CrossRefGoogle Scholar
Juvik, J. O. and Ekern, P. C. (1978) A climatology of mountain fog on Mauna Loa, Hawaii Island, University of Hawaii. Water Resour. Res. Cen. Tech. Rep. no. 118.
Kattleman, R. and Elder, K. (1991) Hydrologic characteristics and balance of an alpine basin in the Sierra Nevada. Water Resour. Res., 27, 1553–62.CrossRefGoogle Scholar
Kirshbaum, D. J. and Durran, D. R. (2005) Observations and modeling of banded orographic precipitation. J. Atmos, Sci., 62(5), 1463–79.CrossRefGoogle Scholar
Koch, H. G. (1961) Die warme Hangzone. Neue anschauungen zur nachtlichen Kaltluft- schichtung in Tälern und an Hängen. Zeit. Met., 15, 151–71.Google Scholar
Köhler, H. (1950) On evaporation from snow surfaces. Arkiv Geofis., 1, 159–85.Google Scholar
Kolbig, J. and Beckert, T. (1968) Untersuchungen der regionalen Unterschiede im Auftreten von Nebelfrost, Zeit. Met., 20, 148–60.Google Scholar
Komarkova, V. and Webber, P. J. (1978) An Alpine vegetation map of Niwot Ridge, Colorado. Arct. Alp. Res., 10, 1–29.CrossRefGoogle Scholar
Koncek, M. (1959) Schneeverhältnisse der Hohen Tatra. Ber. dtsch. Wetterdienst, 54, 132–3.Google Scholar
Koncek, M. (1960) Zur Frage der Nebelfrostablagerungen im Gebirge. Studia Geophys. Geodet., 4, 69–84.CrossRefGoogle Scholar
Konzelmann, T., et al. (1997) Energy balance and evapotranspiration in a high mountain area during summer. J. appl. Met., 36, 966–73.2.0.CO;2>CrossRefGoogle Scholar
Korff, H. C. (1971) Messungen zum Wärmehaushalt in den äquatorialen Anden. Ann. Met., N.F. 5, 99–102.Google Scholar
Koster, R. D., et al. (2000) A catchment-based approach to modeling land surface processes in a general circulation model. J. Geophys. Res., 105(D20), 24 809–22.CrossRefGoogle Scholar
Kraus, H. (1967) Das Klima von Nepal. Khumbu Himal, 1(4), 301–21.Google Scholar
Kraus, H. (1971) A contribution to the heat and radiation budget in the Himalayas. Arch. Met. Geophys. Biokl., A 20, 175–82.CrossRefGoogle Scholar
Krestoviskiy, O. I. (1962) The water balance of small drainage basins during the period of high water. Soviet Hydrol., 1, 362–411.Google Scholar
Kunz, M. and Kottmeier, C. (2006) Orographic enhancement of precipitation over low mountain ranges, Part I. Model formulation and idealized simulations. J. Appl. Met. Climatol., 45, 1025–45.CrossRefGoogle Scholar
Kuo, J. T. and Orville, H. D. (1973) A radar climatology of summertime convective clouds in the Black Hills. J. appl. Met., 12, 359–73.2.0.CO;2>CrossRefGoogle Scholar
Kuroiwa, D. (1965) Icing and Snow Accretion on Electric Wires, CRREL Research Report 123. Hanover, NH: US Army.Google Scholar
Küttner, J. and Model, E. (1948) Verschlüsselungsschwierigkeiten auf Bergstationen. Zeit. Met., 2, 139–41.Google Scholar
Kuvaeva, G. M. (1967) Nekotorye resultaty nablyudeniy nad ispareniem s poverkhnosti snezhnogo pokrova v vysokogornoy zone tsentralnogo Kavkaza (Some results of observations on evaporation over snow surfaces in the high mountain zone of the Central Caucasus 1). Trudy Vysokogornyi Geofiz. Inst., 12, 40–6.Google Scholar
Kuz'min, P. (1970) Methods for the estimation of evaporation from land applied in the USSR. Symposium on World Water Balance, Vol. 1, International Association of Scientific Hydrology Publication No. 92. Paris: UNESCO, pp. 225–31.Google Scholar
Kuz'min, P. (1972) Melting of Snow Cover. Jerusalem: Israel Program of Scientific Translation.Google Scholar
Lamb, H. H. (1955) Two-way relationships between the snow or ice limit and 1000–500 mb thickness in the overlying atmosphere. Q. J. R. Met. Soc., 81, 172–89.CrossRefGoogle Scholar
Landsberg, H. (1962) Physical Climatology. DuBois, PA: Gray Printing Co., Inc, p. 186.Google Scholar
Lang, H. (1981) Is evaporation an important component in high alpine hydrology, Nordic Hydrol., 12, 217–24.CrossRefGoogle Scholar
Lang, H. (1985) Höhenabhängigkeit der Niederschläge. In Sevruk, B. (ed.), Die Niederschlag in der Schweiz (Berträge zur Geologie der Schweiz – Hydrologie, No. 31). Bern: Kummerly and Frey, pp. 149–57.Google Scholar
Larson, L. W. (1971) Shielding Precipitation Gages from Adverse Wind Effects with Snow Fences. Laramie: University of Wyoming, Water Resources Ser. no. 25.Google Scholar
Lauer, W. (1975) Klimatische Grundzüge der Höhenstufung tropischer Gebirge. In Tagungsbericht und wissenschaftliche Abhandlungen. 40 Deutscher Geographentag, Innsbruck. Innsbruck: F. Steiner, pp. 76–90.Google Scholar
Lauscher, A. and Lauscher, F. (1976) Zur Berechnung der Schneeverdunstung auf dem Sonnblick, 72–73 Jahresber. des Sonnblick-Vereines für die Jahre 1974–1975. Vienna: Sonnblict-Verein, pp. 3–10.Google Scholar
Lauscher, F. (1976a) Weltweite Typen der Höhenabhängigkeit des Niederschlags. Wetter u. Leben, 28, 80–90.Google Scholar
Lauscher, F. (1976b) Methoden zur Weltklimatologie der Hydrometeore. Der Anteil des festen Niederschlags am Gesamtniederschlag. Arch. Met. Geophys. Biokl., B 24, 129–76.CrossRefGoogle Scholar
Lauscher, F. (1977) Reif und Kondensation auf Schnee und die wahre Zahl der Tage mit Reif. Wetter u. Leben, 29, 175–80.Google Scholar
Lauscher, F. (1978a) Eine neue Analyse von Hilding Köhler's Messungen der Schneeverdunstung auf dem Haldde-Observatorium aus dem Winter 1920/21. Arch. Met. Geophys. Biokl., B 26, 193–8.CrossRefGoogle Scholar
Lauscher, F. (1978b) Typen der Höhenabhängigkeit des Niederschlags bei verschiedenen Witterungslagen im Sonnblick Gebiet. Arbeiten, Zentralanst. für Met. Geodynam. (Vienna), 32(95), 1–6.Google Scholar
LeDrew, E. F. (1975) The energy balance of a mid-latitude alpine site during the growing season, 1973. Arct. Alp. Res. 7, 301–14.CrossRefGoogle Scholar
LeDrew, E. F. and Emerick, J. C. (1974) A mechanical balance-type lysimeter for use in remote environments. Agric. Met., 13, 253–8.CrossRefGoogle Scholar
LeDrew, E. F. and Weller, G. (1978) A comparison of the radiation and energy balance during the growing season for arctic and alpine tundra. Arct. Alp. Res., 10, 665–78.CrossRefGoogle Scholar
Lemmela, R. and Kuusisto, E. (1974) Evaporation from snow cover. Hydrol. Sci. Bull., 19, 541–8.Google Scholar
Li, L. and Pomeroy, J. W. (1997) Estimates of threshold wind speeds for snow transport using meteorological data. J. appl. Met., 36(3), 205–13.2.0.CO;2>CrossRefGoogle Scholar
Light, P. (1941) Analysis of high rates of snow-melting. Trans. Am. Geophys. Union, 22(1), 195–205.CrossRefGoogle Scholar
Linsley, R. K. (1958) Correlation of rainfall intensity and topography in northern California. Trans. Am. Geophys. Union, 39, 15–18.CrossRefGoogle Scholar
Lloyd, C. D. (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol., 308, 128–50.CrossRefGoogle Scholar
Longacre, L. L. and Blaney, H. F. (1962) Evaporation at high elevations in California. Proc. Am. Soc. Civ. Eng. J. Irrig. Drainage Div., 3172, 33–54.Google Scholar
Longley, R. W. (1975) Precipitation in valleys. Weather, 30, 294–300.CrossRefGoogle Scholar
Lumb, P. E. (1983) Snow on the hills. Weather, 38, 114–15.CrossRefGoogle Scholar
Lundquist, J. D. and Cayan, D. R. (2007) Surface temperature patterns in complex terrain: Daily variations and long-term changes in the central Sierra Nevada, California. J. Geophys. Res., 112(D11) D11124, 1–15.Google Scholar
MacCready, P. B. (1955) High and low elevations as thermal source regions. Weather, 10, 35–40.CrossRefGoogle Scholar
Mahrt, L. (2006) Variation of surface air temperature in complex terrain. J. Atmos. Sci., 45, 1481–93.Google Scholar
Manley, G. (1971) The mountain snows of Britain, Weather, 26, 192–200.CrossRefGoogle Scholar
Marcus, M. G. and Brazel, A. J. (1974) Solar radiation measurements at 5365 meters, Mt. Logan, Yukon. In Bushnell, V. C. and Marcus, M. G. (eds), Icefield Ranges Research Project, Scientific Results, Vol. 4. New York: American Geographical Society, pp. 117–19.Google Scholar
Marcus, M. G. and LaBelle, J. C. (1970) Summertime observations at the 5360 meter level, Mount Logan, Yukon, 1968–1969. Arct. Alp. Res., 2, 103–14.CrossRefGoogle Scholar
Marek, B., et al. (2002) Temporal and spatial variations of fog in the western Sudety Mts., Poland. Atmos. Res., 64(1–4), 19–28.Google Scholar
Martinec, J. (1985) Korrektur der Niederschlagsdaten durch Schneemessungen. In Sevruk, B. (ed.), Die Niederschlag in der Schweiz (Beiträge zur Geologie der Schweiz-Hydrologie no. 31). Berne: Kummerly and Frey, pp. 77–96.Google Scholar
Martinec, J. (1987) Importance and effects of seasonal snow cover. In Goodison, B. E., Barry, R. G. and Dozier, J. (eds), Large Scale Effects of Seasonal Snow Cover. IAHS Publ. no. 166. Wallingford, UK: International Association of Hydrological Science, pp. 107–20.Google Scholar
Martinec, J. (1989) Hour-to-hour snowmelt rates and lysimeter outflow during an entire ablation period. Snow Cover and Glacier Variations. Wallingford, UK: JAHS.Google Scholar
Martinelli, M. Jr. (1959) Some hydrologic aspects of alpine snowfields under summer conditions. J. Geophys. Res., 64, 451–5.CrossRefGoogle Scholar
Martinelli, M. Jr., (1960) Moisture exchange between the atmosphere and alpine snow surfaces under summer conditions. J. Met., 17, 227–31.2.0.CO;2>CrossRefGoogle Scholar
Martinelli, M. Jr. (1973) Snow-fence experiments in alpine areas. J. Glaciol., 12(65), 291–303.CrossRefGoogle Scholar
Marwitz, J. D. (1974) An airflow case study over the San Juan Mountains of Colorado. J. appl. Met., 13, 450–8.2.0.CO;2>CrossRefGoogle Scholar
Marwitz, J. D. (1980) Winter storms over the San Juan Mountains. Part I. Dynamical processes. J. appl. Met., 19, 913–26.2.0.CO;2>CrossRefGoogle Scholar
Marwitz, J. D. (1987) Deep orographic storms over the Sierra Nevada. Part II. The precipitation process. J. Atmos. Sci., 44, 174–85.2.0.CO;2>CrossRefGoogle Scholar
McCulloch, J. S. G. (1965) Tables for the rapid computation of the Penman estimate of evaporation. E. Afr. Agric. Forest J., 30, 286–95.CrossRefGoogle Scholar
McCutchan, M. H. (1976) Diagnosing and predicting surface temperature in mountainous terrain. Mon. Wea. Rev., 104, 1044–51.2.0.CO;2>CrossRefGoogle Scholar
Medina, S., et al. (2005) Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62(10), 3580–98.CrossRefGoogle Scholar
Meiman, J. R. and Grant, L. O. (1974) Snow-Air Interactions and Management of Mountain Watershed Snowpack, Completion Report Serial No. 57. Fort Collins, CO: Environmental Research Center, Colorado State University.Google Scholar
Meister, R. (1987) Wind systems and snow transport in alpine topography. In Salm, B. and Gubler, H. (eds), Avalanche Formation, Movement and Effects, IAHS. Publication 162. Wallingford, UK: International Association of Hydrological Sciences, pp. 265–7.Google Scholar
Mellor, M. (1965) Blowing Snow (Cold Regions Science and Engineering. Part III, Section A3c). Hanover, NH: US Army, Cold Regions Research Engineering Laboratory.Google Scholar
Mendonca, B. G. and Iwaoka, W. T. (1969) Trade wind inversion at the slope of Mauna Loa. J. appl. Met., 8, 213–19.2.0.CO;2>CrossRefGoogle Scholar
Migala, K. and Sobik, M. (2002) Rime in the Giant Mountains (the Sudetes). Poland. Atmos. Res., 64(1–4), 63–73.CrossRefGoogle Scholar
Mikhel, V. M. and Rudneva, A. V. (1971) Description of snow transport and snow deposition in the European USSR. Soviet Hydrol., 10, 342–8.Google Scholar
Mikhel, V. M., Rudneva, A. V. and Lipovskaya, V. I. (1971) Snowfall and Snow Transport during Snowstorms over the USSR. Jerusalem: Israel Program of Scientific Translation.Google Scholar
Miller, D. H. (1955) Snow Cover and Climate in the Sierra Nevada, California. Berkeley, CA: University of California Press, Publ. in Geog., 11.Google Scholar
Miller, D. H. (1962) Snow in the trees – where does it go? In Proceedings of the 30th Annual Western Snow Conference, pp. 21–9.Google Scholar
Miller, J. F. (1972) Physiographically adjusted precipitation-frequency maps. In Distribution of Precipitation in Mountainous Areas, Vol. 2. Geneva: World Meteorological Organization no. 326, pp. 264–77.Google Scholar
Miller, J. F. (1982) Precipitation evaluation in hydrology. In Plate, E. J. (ed.), Engineering Meteorology. Amsterdam: Elsevier, pp. 371–428.Google Scholar
Miniscloux, F., Creutin, J. D. and Anquetin, S. (2001) Geostatistical analysis of orographic rainbands. J. appl. Met., 40, 1835–54.2.0.CO;2>CrossRefGoogle Scholar
Mori, M. and Kobayashi, T. (1996) Dynamics interactions between observed nocturnal drainage winds and cold air lake. J. Met. Soc. Japan, 74, 247–58.CrossRefGoogle Scholar
Müller, H. (1984) Zum Strahlungshaushalt im Alpenraum. Mitteilungen der Versuchsanstalt fuer Wasserbau, Hydrologie und Glaziologie No. 71. Zurich: ETH, 167 pp.Google Scholar
Müller, H. (1985) On the radiation budget in the Alps. J. Climatol., 5, 445–62.CrossRefGoogle Scholar
Murray, R. (1952) Rain and snow in relation to the 1000–700 mb and 1000–500 mb thickness and the freezing level. Met. Mag., 81, 5–8.Google Scholar
Myers, V. A. (1962) Airflow on the windward side of a ridge. J. Geophys. Res., 67, 4267–91.CrossRefGoogle Scholar
Nagel, J. F. (1956) Fog precipitation on Table Mountain. Q. J. R. Met. Soc., 83, 452–60.CrossRefGoogle Scholar
Nicholass, C. A. and Harrold, T. W. (1975) The distribution of rainfall over subcatchments of the River Dee as a function of synoptic type. Met. Mag., 104, 208–17.Google Scholar
Nickerson, E. C., Smith, D. R. and Chappell, C. F. (1978) Numerical calculation of airflow and cloud during winter storm conditions in the Colorado Rockies and Sierra Nevada mountains. In Proceedings of the Conference on Sierra Nevada Meteorology. Boston, MA: American Meteorological Society, pp. 126–32.Google Scholar
Nipher, F. E. (1878) On the determination of the true rainfall in elevated gages. Proc. Am. Ass. Adv. Sci., 27, 103–8.Google Scholar
Nullet, D. and McGranaghan, M. (1988) Rainfall enhancement over the Hawaiian Islands. J. Climate, 1, 837–9.2.0.CO;2>CrossRefGoogle Scholar
Obrebska-Starkel, B. (1970) Uber die thermische Temperaturschichtung in Bergtälern. Acta Climat., 9, 33–47.Google Scholar
Ohmura, A. (1982) Regional water balance on the arctic tundra in summer. Water Resour. Res., 18, 301–5.CrossRefGoogle Scholar
Ohmura, A. (1991) New precipitation and accumulation maps for Greenland. J. Glaciol., 37(125), 140–8.CrossRefGoogle Scholar
Oke, T. R. (1987) Boundary Layer Climates, 2nd edn. London: Methuen, 435 pp.Google Scholar
Ono, S. (1925) On orographic precipitation. Phil. Mag., 6th Ser., 49, 144–64.CrossRefGoogle Scholar
Orville, H. D. (1965a) A numerical study on the initiation of cumulus clouds over mountainous terrain. J. Atmos. Sci., 22, 684–99.2.0.CO;2>CrossRefGoogle Scholar
Orville, H. D. (1965b) A photogrammetric study of the initiation of cumulus clouds over mountainous terrain. J. Atmos. Sci., 22, 700–9.2.0.CO;2>CrossRefGoogle Scholar
Orville, H. D. (1968) Ambient wind effects on the initiation and development of cumulus clouds over mountains. J. Atmos. Sci., 25, 385–403.2.0.CO;2>CrossRefGoogle Scholar
Ovadia, D. and Pegg, R. K. (1979) An approach to calculating evaporation rates at remote sites. Nordic Hydrol., 10, 41–8.CrossRefGoogle Scholar
Page, J. K. (1969) Heavy glaze in Yorkshire – March 1969. Weather, 24, 486–95.CrossRefGoogle Scholar
Parsons, J. (1960) “Fog drip” from coastal stratus, with special reference to California. Weather, 15, 58–62.CrossRefGoogle Scholar
Peak, G. W. (1963) Snow pack evaporation factors. In Proceedings of the 31st Annual Western Snow Conference, pp. 20–7.
Peck, E. L. (1964) The little used third dimension. In Proceedings of the 32nd Annual Meeting of the Western Snow Conf. (Nelson, British Columbia), pp. 33–40.Google Scholar
Peck, E. L. (1972a) Discussion of problems in measuring precipitation in mountainous Areas. In Distribution of Precipitation in Mountainous Areas, Vol. I. Geneva: World Meteorological Organization No. 326, pp. 5–16.Google Scholar
Peck, E. L. (1972b) Relation of orographic precipitation patterns to meteorological parameters. In Distribution of Precipitation in Mountainous Areas, Vol. II. Geneva: World Meteorological Organization No. 326, pp. 234–42.Google Scholar
Peck, E. L. and Brown, M. J. (1962) An approach to the development of isohyetal maps for mountainous areas. J. Geophys. Res., 67, 681–94.CrossRefGoogle Scholar
Peck, E. L. and Pfankuch, D. J. (1963) Evaporation Rates in Mountainous Terrain. International Association of Scientific Hydrology, Publ. No. 62. Gentbrugge, Belgium: IASH, pp. 267–78.Google Scholar
Pedgley, D. E. (1967) The shape of snowdrifts. Weather, 22, 42–8.CrossRefGoogle Scholar
Pedgley, D. E. (1970) Heavy rainfalls over Snowdonia. Weather, 25, 340–9.CrossRefGoogle Scholar
Pedgley, D. E. (1971) Some weather patterns in Snowdonia. Weather, 26, 412–44.CrossRefGoogle Scholar
Penman, H. L. (1963) Vegetation and Hydrology. Commonwealth Bureau of Soils Technical Communication 53. Farnham Royal, Bucks: Commonwealth Agricultural Bureaux.Google Scholar
Phillips, D. L., Dolp, J. and Marks, D. (1992) A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric. Forest Met., 58, 1–21.CrossRefGoogle Scholar
Phillips, P. E. (1956) Icing of overhead high-voltage power lines in the Grampians. Met. Mag., 85, 376–8.Google Scholar
Pielke, R. A. and Mehring, P. (1977) Use of mesoscale climatology in mountainous terrain to improve the spatial representation of mean monthly temperatures. Mon. Wea. Rev., 105, 108–12.2.0.CO;2>CrossRefGoogle Scholar
Pleško, N. and Sinik, N. (1978) The energy balance in the mountains of Croatia. Arbeiten, Zentralanst. Met. Geodynam., Vienna, 31(9), 1–9, 16.Google Scholar
Pockels, F. (1901) The theory of the formation of precipitation on mountain slopes. Mon. Weather Rev., 29, 152–9, 306–7.CrossRefGoogle Scholar
Poggi, A. (1959) Contribution à la connaissance de la distribution altimétrique de la durée de l'enneigement dans les Alpes françaises du nord. Ber. dtsch. Wetterd., 54, 134–49.Google Scholar
Pomeroy, J. W. and Essery, R. L. H. (1999) Turbulent fluxes during blowing snow: Field tests of model sublimation predictions. Hydrol. Processes, 13, 2963–75.3.0.CO;2-9>CrossRefGoogle Scholar
Pomeroy, J. W., Gray, D. M. and Landine, P. G. (1993) Prairie blowing snow model: characteristics, validation, operation. J. Hydrol., 144(1–4), 165–92.CrossRefGoogle Scholar
Poulter, R. M. (1936) Configuration, air mass and rainfall. Q. J. R. Met. Soc., 62, 49–79.CrossRefGoogle Scholar
Priestley, C. H. B. and Taylor, R. J. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 81–92.2.3.CO;2>CrossRefGoogle Scholar
Pugh, H. L. D. and Price, W. I. J. (1954) Snow drifting and the use of snow fences. Polar Rec., 7(47), 4–23.CrossRefGoogle Scholar
Queney, P. (1948) The problem of airflow over mountains: a summary of theoretical studies. Bull. Am. Met. Soc., 29, 16–26.Google Scholar
Raddatz, R. L. and Khandekar, M. L. (1977) Numerical simulation of cold easterly circulations over the Canadian Western Plains using a mesoscale boundary-layer model. Boundary-Layer Met., 11, 307–28.CrossRefGoogle Scholar
Radok, U. (1968) Deposition and Erosion of Snow by the Wind. CRREL Research Report 20, Hanover, NH: US Army, Cold Regions Research Engineering Laboratory.Google Scholar
Radok, U. (1977) Snow drift. J. Glaciol., 19(81), 123–39.Google Scholar
Rallison, R. E. (1981) Automated system for collecting snow and related hydrological data in mountains of the western United States. Hydrol. Sci. Bull., 26, 83–9.CrossRefGoogle Scholar
Rangno, A. L. (1979) A re-analysis of the Wolf Creek cloud seeding experiment. J. appl. Met., 18, 579–85.2.0.CO;2>CrossRefGoogle Scholar
Rango, A., et al. (1989) Average areal water equivalent of snow in a mountain basin using microwave and visible satellite data. IEEE Trans. Geosci. Remote Sensing, 27, 740–5.CrossRefGoogle Scholar
Ranzi, R., Zappa, M. and Bachi, B. (2007) Hydrological aspects of the Mesoscale Alpine Programme; Findings from field experiments and simulations. Q. J. Roy. Met. Soc., 133(625), 867–80.CrossRefGoogle Scholar
Rauber, R. M., et al. (1986) The characteristics and distribution of cloud water over the mountains of northern Colorado during winter-time storms. Part I. Temporal variations. J. Clim. Appl. Met., 25, 468–88.2.0.CO;2>CrossRefGoogle Scholar
Raymond, D. J. and Wilkening, M. H. (1980) Mountain-induced convection under fair weather conditions. J. Atmos. Sci., 37, 2693–706.2.0.CO;2>CrossRefGoogle Scholar
Rechard, P. A. (1972) Winter precipitation gauge catch in windy mountainous areas. In Distribution of Precipitation in Mountainous Areas, Vol. I. Geneva: World Meteorological Organization No. 326, pp. 13–26.Google Scholar
Rechard, P. A. and Raffelson, C. N. (1974) Evaporation from snowdrifts under oasis conditions. In Advanced Concepts and Techniques, The Study of Snow and Ice Resources. Washington, DC: National Academy Science, pp. 99–107.Google Scholar
Reid, I. (1973) The influence of slope aspect on precipitation receipt. Weather, 28, 490–3.CrossRefGoogle Scholar
Reinelt, E. R. (1970) On the role of orography in the precipitation regime of Alberta. Albertan Geographer, 6, 45–58.Google Scholar
Reiter, R. and Sladkovic, P. (1970) Control of vertical transport of aerosols between 700 and 3000 metres by lapse rate and fine structure of temperature. J. Geophys. Res., 75, 3065–75.CrossRefGoogle Scholar
Rhea, J. O. (1978) Orographic Precipitation Model for Hydrometeorological Use, Atmospheric Science Paper No. 287. Fort Collins, CO: Colorado State University.
Rhea, J. O. and Grant, L. O. (1974) Topographic influences on snowfall patterns in mountainous terrain. In Advanced Concepts and Techniques in the Study of Snow and Ice Resources. Washington, DC: National Academy of Science, pp. 182–92.Google Scholar
Riley, G. T., Landin, M. G. and Bosart, L. F. (1987) The diurnal variability of precipitation across the central Rockies and adjacent Great Plains. Mon. Wea. Rev., 115(6), 1161–72.2.0.CO;2>CrossRefGoogle Scholar
Rodda, J. C. (1967) The rainfall measurement problem. In Geochemistry, Precipitation, Evaporation, Soil-Moisture, Evaporation. IUGG General Assembly of Bern, pp. 215–30.Google Scholar
Roe, G. H. (2002) Modeling orographic precipitation over ice sheets: an assessment over Greenland. J. Glaciol., 48, 70–80.CrossRefGoogle Scholar
Roe, G. T. (2005) Orographic precipitation. Ann. Rev. Earth Planet. Sci., 33, 645–71.CrossRefGoogle Scholar
Rohrer, M. (1989) Determination of the transition air temperature from snow to rain and intensity of precipitation. In Sevruk, B. (ed.), Precipitation Measurement, WMO/IAHS/ETH Workshop on Precipitation Measurements. Zurich: Swiss Federal Institute of Technology, pp. 475–82.Google Scholar
Rotach, M. W., et al. (2004) Turbulence structure and exchange processes in an alpine valley, The Riviera project. Bull. Amer. Met. Soc., 85(9), 1367–85.CrossRefGoogle Scholar
Rott, H. (1979) Vergleichende Untersuchungen der Energiebilanz in Hochgebirge. Arch. Met. Geophys. Biokl., A 28, 211–32.CrossRefGoogle Scholar
Rotunno, R. and Houze, R. A. (2007) Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. Roy. Met. Soc., 133(625), 811–30.CrossRefGoogle Scholar
Ryerson, C. C. (1988) New England Mountain Icing Climatology, CRREL Report 88–12. Hanover, NH: US Army.CrossRefGoogle Scholar
Sabo, E. D. (1956) Evaporation from Snow in the Ergeni District. Selected Articles on Snow and Snow Evaporation. Jerusalem: Israel Program of Science Translations, pp. 14–21.Google Scholar
Sachs, P. (1972) Wind Forces in Engineering. Oxford: Pergamon Press, p. 270.Google Scholar
Saintignon, M. F. (1976) Décroissance de températures en montagne de latitude moyenne: exemple des Alpes françaises du Nord. Rev. Géog. Alp., 64, 483–94.CrossRefGoogle Scholar
Salter, M. de C. S. (1918) The relation of rainfall to configuration. Brit. Rainfall, 1918, 40–56.Google Scholar
Santeford, H. S. Jr. (1972) Management of windblown alpine snows. Unpublished Ph.D. Thesis. Fort Collins, CO: Colorado State University.
Sarker, R. P. (1966) A dynamical model of orographic rainfall. Mon. Weather Rev., 94, 555–72.2.3.CO;2>CrossRefGoogle Scholar
Sarker, R. P. (1967) Some modifications in a dynamical model of orographic rainfall. Mon. Weather Rev., 95, 673–84.2.3.CO;2>CrossRefGoogle Scholar
Sato, T. and Kimura, F. (2005) Diurnal cycle of convective instability around the central mountains in Japan during the warm season. J. Atmos. Sci., 62(5), 1626–36.CrossRefGoogle Scholar
Sawyer, J. S. (1956) The physical and dynamical problems of orographic rain. Weather, 11, 375–81.CrossRefGoogle Scholar
Schermerhorn, V. P. (1967) Relations between topography and annual precipitation in western Oregon and Washington. Water Resour. Res., 3, 707–11.CrossRefGoogle Scholar
Schmidt, R. A. Jr. (1972) Sublimation of wind-transported snow – a model, USDA, Forest Service Research Paper RM-90. Fort Collins, CO: Rocky Mountain Forest and Range Experimental Station.
Schmidt, R. A. (1977) A system that measures blowing snow. USDA, Forest Service Research Paper RM-194. Fort Collins, CO: Rocky Mountain Forest and Range Experimental Station.
Schmidt, R. A. (1984) Transport rate of drifting snow and the mean wind speed profile. Boundary-Layer Met., 34, 213–41.CrossRefGoogle Scholar
Schüepp, M. (1963) Bewölkung und Nebel. Klimatologie der Schweiz, Vol. 4, part H. Supplement, Annalen, Schweizerischen Meteorologischen Zentralanstalt, (Annual 1962), 68 pp.
Schultz, O. and Jong, C. (2004) Snowmelt and sublimation: Field experiments and modelling in the High Atlas Mountains of Morocco. Hydrol Earth System Sci., 8, 1076–89.CrossRefGoogle Scholar
Scorer, R. S. (1955) The growth of cumulus over mountains. Arch. Met. Geophys. Biokl., A 8, 25–34.CrossRefGoogle Scholar
Sevruk, B. (1972a) Precipitation measurements by means of storage gauges with stereo and horizontal orifices in the Baye de Montreux watershed. In Distribution of Precipitation in Mountainous Areas, Vol. 1. Geneva: World Meteorological Organization No. 326, pp. 86–95.Google Scholar
Sevruk, B. (1972b) Evaporation losses from storage gauges. In Distribution of Precipitation in Mountainous Areas, Vol. 1. Geneva: World Meteorological Organization No. 326, pp. 96–102.Google Scholar
Sevruk, B. (1974) The use of stereo, horizontal and ground level orifice gages to determine a rainfall-elevation relationship. Water Resour. Res., 10, 1138–42.CrossRefGoogle Scholar
Sevruk, B. (1983) Correction of measured precipitation in the Alps using the water equivalent of new snow. Nordic Hydrol., 14, 49–58.CrossRefGoogle Scholar
Sevruk, B. (1985) Schneeanteil am Monatsniederschlag. In Sevruk, B. (ed.), Die Niederschlag in der Schweiz (Beiträge zur Geologie der Schweiz – Hydrologie No. 31). Bern: Kummerly and Frey, pp. 127–37.Google Scholar
Sevruk, B. (1986a) Correction of precipitation measurements. In Sevruk, B. (ed.), Proceedings of the International Workshop on the Correction of Precipitation Measurements, Instruments and Observing Methods, Report No. 24 (WMO/TD No. 104). Geneva: World Meteorological Organization, pp. 13–23.Google Scholar
Sevruk, B. (1986b) Correction of precipitation measurements: Swiss experience. In Sevruk, B. (ed.), Precipitation Measurement. Zurich: Swiss Federal Institute of Technology, pp. 187–93.Google Scholar
Sevruk, B. (ed.) (1989) Precipitation measurement. WMO/IAHS/ETH Workshop on Precipitation Measurement. Zurich: Swiss Federal Institute of Technology.Google Scholar
Sevruk, B. and Klemm, S. (1989) Types of standard precipitation gauges. In Sevruk, B. (ed.), Precipitation Measurement. Zurich: Swiss Federal Institute of Technology, pp. 227–32.Google Scholar
Sharples, J. J., Hutchinson, M. F. and Jellett, D. R. (2005) On the horizontal scale of elevation dependence of Australian monthly precipitation. J. appl. Met., 44, 1850–65.CrossRefGoogle Scholar
Shea, J. M., Marshall, S. J. and Livingston, J. M. (2004) Glacier distribution and climate in the Canadian Rockies. Arct. Antarct. Alp Res., 36(2), 272–9.CrossRefGoogle Scholar
Sheaffer, J. D. and Reiter, E. R. (1987) Measurements of surface energy budgets in the Rocky Mountains of Colorado. J. Geophys. Res., 92(D4), 445–62.CrossRefGoogle Scholar
Sibley, A. (2005) Analysis of the heavy orographic rainfall over North Wales, 3 and 4 February 2004. Weather, 60, 31–6.CrossRefGoogle Scholar
Silverman, B. A. (1960) The effect of a mountain on convection. In Anderson, C. E. (ed.), Cumulus Dynamics. New York: Pergamon Press, pp. 4–27.Google Scholar
Slatyer, R. O., Cochrane, P. M. and Galloway, R. W. (1984) Duration and extent of snow cover in the Snowy Mountains and a comparison with Switzerland. Search, 15, 327–31.Google Scholar
Slaughter, C. W. (1970) Evaporation from Snow and Evaporation Retardation by Monomolecular Films, Special Rep. 130. Hanover, NH: Cold Regions Research Engineering Laboratory, US Army.Google Scholar
Smith, R. B. (1979) The influence of mountains on the atmosphere. Adv. Geophys., 21, 87–230.CrossRefGoogle Scholar
Smith, R. B. (1982) A differential advection model of orographic rain. Mon. Wea. Rev., 110, 306–9.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (1985) Comment on “Interaction of low-level flow with the Western Ghat mountains and offshore convection in the summer monsoon” (Reply D. R. Durran and R. L. Grossman). Mon. Wea. Rev., 113, 2176–81.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (2003) A linear time-delay model of orographic precipitation. J. Hydrol., 282, 2–9.CrossRefGoogle Scholar
Smith, R. B. and Lin, Y.-L. (1983) Orographic rain on the Western Ghats. In Riter, E. R., Zhu, B.-Z. and Qian, Y.-F. (eds), Proceedings of the First Sino-American Workshop on Mountain Meteorology. Beijing: Science Press, pp. 71–94.Google Scholar
Smith, R. B. and Barstad, I. (2004) A linear theory of orographic precipitation. J. Atmos. Sci., 61, 1377–91.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., et al. (2003) Orographic precipitation and airmass transformation; An Alpine example. Q. J. R. Met. Soc., 129, 433–54.CrossRefGoogle Scholar
Smith, R. B., Barstad, L. and Bonneau, L. (2005) Orographic precipitation and Oregon's climate transition. J. Atmos. Sci., 62, 177–91.CrossRefGoogle Scholar
Smithson, P. A. (1970) Influence of topography and exposure on airstream rainfall in Scotland. Weather, 25, 379–86.CrossRefGoogle Scholar
Sporns, U. (1964) On the transportation of short duration rainfall intensity data in mountainous regions. Arch. Met. Geophys. Biokl., B 13, 438–42.CrossRefGoogle Scholar
Spreen, W. C. (1947) Determination of the effect of topography on precipitation. Trans. Am. Geophys. Un., 28, 285–90.CrossRefGoogle Scholar
Stanev, S. (1968) Nebelfrostablagerungen an Freileitungen unter Gebirgsbedingungen. Zeit. Met., 20, 161–4.Google Scholar
Staudinger, M. and Rott, H. (1981) Evapotranspiration at two mountain sites during the vegetation period. Nordic Hydrol., 12, 207–16.CrossRefGoogle Scholar
Steinacker, R. (1983) Diagnose und Prognose der Schneefallgrenze. Wetter u. Leben, 35, 81–90.Google Scholar
Steinhauser, F. (1948) Die Schneehohen in den Ostalpen und die Bedeutung der winterlichen Temperaturinversion. Arch. Met. Geophys. Biokl., B 1, 63–74.CrossRefGoogle Scholar
Steinhauser, F. (1967) Methods of evaluation and drawing of climatic maps in mountainous countries. Arch. Met. Geophys. Biokl., B 15, 329–58.CrossRefGoogle Scholar
Stewart, R. E. (1985) Precipitation types in winter storms. Pure Appl. Geophys., 123, 597–609.CrossRefGoogle Scholar
Stigter, C. J. (1976) On the non-constant gamma. J. appl. Met., 15, 1326–7.2.0.CO;2>CrossRefGoogle Scholar
Stigter, C. J. (1978) On the pressure dependence of the wind function in Dalton's and Penman's evaporation equations. Arch. Met. Geophys. Biokl., A 27, 147–54.CrossRefGoogle Scholar
Storebö, P. B. (1968) Precipitation formation in a mountainous coast region. Tellus, 20, 239–50.CrossRefGoogle Scholar
Storr, D. and Hartog, G. (1975) Gamma – the psychrometer non-constant. J. appl. Met., 14, 1397–8.2.0.CO;2>CrossRefGoogle Scholar
Strangeways, I. (2000) Measuring the Natural Environment. Cambridge: Cambridge University Press, 365 pp.CrossRefGoogle Scholar
Struzer, L. R., Nechayer, I. N. and Bogdanova, E. G. (1965) Systematic errors of measurements of atmospheric precipitation. Soviet Hydrol., 4, 500–4.Google Scholar
Sugden, D. E. (1977) Reconstruction of the morphology, dynamics, and thermal characteristics of the Laurentide ice sheet at its maximum. Arct. Alp. Res., 9, 21–47.CrossRefGoogle Scholar
Tabler, R. D. (1975a) Predicting profiles of snowdrifts in topographic catchments. In Proceedings of the 43rd Western Snow Conference, pp. 87–97.Google Scholar
Tabler, R. D. (1975b) Estimating the transport and evaporation of blowing snow. In Snow Management on the Great Plains, Publication 73. Lincoln, NE: University of Nebraska, Agriculture Experimental Station, pp. 85–104.Google Scholar
Takeuchi, M. (1980) Vertical profile and horizontal increase of drift-snow transport. J. Glaciol., 26(94), 481–92.CrossRefGoogle Scholar
Tappenier, U. and Cernusca, A. (1989) Canopy structure and light climate of different alpine plant communities: analysis by means of a model. Theoret. Appl. Climatol., 40, 81–92.CrossRefGoogle Scholar
Tepes, E. (1978) Ice depositions in Romanian mountainous regions. Veröff, Schweiz. Met. Zentralanstalt, Zurich, 40, 308–12.Google Scholar
Tesche, T. W. (1988) Numerical simulation of snow transport, deposition and redistribution. In Proceedings of the Western Snow Conference 56th Annual Meeting, 93–103.Google Scholar
Thom, A. S. and Oliver, H. R. (1977) On Penman's equation for estimating regional evapotranspiration. Q. J. R. Met. Soc., 103, 345–58.CrossRefGoogle Scholar
Thompson, R. J. (1975) Energy budgets for three small plots – substantiation of Priestley and Taylor's large-scale evaporation parameter. J. appl. Met., 14, 1399–401.2.0.CO;2>CrossRefGoogle Scholar
Thornton, P. E., Running, S. W. and White, M. A. (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214–51.CrossRefGoogle Scholar
Tucker, D. F. and Reiter, E. R. (1988) Modeling heavy precipitation in complex terrain. Met. Atmos. Phys., 39, 119–31.CrossRefGoogle Scholar
Tucker, G. B. (1954) Mountain cumulus. Weather, 9, 198–200.CrossRefGoogle Scholar
Turner, H. (1985) Nebelniederschlag. In Sevruk, B. (ed.), Die Niederschlag in der Schweiz. (Beiträge zur Geologie der Schweiz – Hydrologie, No. 31). Bern: Kummerly and Frey, pp. 77–96.Google Scholar
Vogelman, H. W. (1973) Fog precipitation in the cloud forests of eastern Mexico. BioScience, 23, 96–100.CrossRefGoogle Scholar
Voloshina, A. P. (1966) Teplovoy Balans Poverkhnosti Vysokogornykh Lednikov v Letnii Period (Heat Balance of the Surface of Mountain Glaciers in Summer). Moscow: Nauka.Google Scholar
Vuille, M. (1996) Zur raumzeitlichen Dynamik von Schneefall und Ausaperung in Bereich des südlichen Altiplano. Geographica Bernensia (University of Bern), G45, 118 pp.Google Scholar
Wagner, A. (1930) Uber die Feinstruktur des Temperaturgradienten längs Berghängen. Zeit. Geophys., 6, 310–18.Google Scholar
Wagner, A. (1937) Gibt es im Gebirge eine Hôhenzone maximalen Niederschlages? Gerlands Beitr. Geophys., 50, 150–5.Google Scholar
Waibel, K. (1955) Die meteorologischen Bedingungen für Nebelfrostablagerungen am Hochspannungsleitungen im Gebirge. Arch. Met. Geophys. Biokl., B 7, 74–83.CrossRefGoogle Scholar
Waldemann, G. (1959) Schnee und Bodenfrost als Standortsfaktoren am Grossen Falkenstein. Forstwiss. Centralblatt., 78, 98–108.CrossRefGoogle Scholar
Walker, E. R. (1961) A Synoptic Climatology for Parts of the Western Cordillera. Arctic Meteorology Research Group, Published in Met. No. 35. Montreal: McGill University.Google Scholar
Wanner, H. (1979) Zur Bildung, Verteilung und Vorhersage winterlicher Nebel im Querschnitt Jura-Alpen. Geographica Bernensia, G. 7.Google Scholar
Warnick, C. C. and Penton, V. E. (1971) New methods of measuring water equivalent of snow pack for automatic recording at remote mountain locations. J. Hydrol., 13, 201–15.CrossRefGoogle Scholar
Webster, R. and Oliver, M. A. (2001) Geostatistics for Environmental Geoscientists. Hoboken, NJ: Wiley, 286 pp.Google Scholar
Weckworth, I. M., et al. (1997) Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505–26.2.0.CO;2>CrossRefGoogle Scholar
Weischet, W. (1969) Klimatologische Regeln zur Vertikalverteilung der Niederschlage in Tropengebirgen. Die Erde, 100, 287–306.Google Scholar
Wendler, G. and Ishikawa, N. (1973) Heat balance investigations in an arctic mountainous area in northern Alaska. J. appl. Met., 12, 955–62.2.0.CO;2>CrossRefGoogle Scholar
West, A. J. (1959) Snow evaporation and condensation. In Proceedings of the 27th Annual Meeting, Western Snow Conference, pp. 66–74.Google Scholar
West, A. J. (1962) Snow evaporation from a forested watershed in the central Sierra Nevada. J. Forest., 60, 481–4.Google Scholar
Whiteman, C. D., et al. (2004) Comparison of vertical sounding and sidewall air temperature measurements in a small alpine basin. J. appl. Met., 43(11), 1635–47.CrossRefGoogle Scholar
Willmott, C. J. (1977) WATBUG: A FORTRAN IV algorithm for calculating the climatic water budget. Newark, DE: Water Resources Center, University of Delaware.
Wilson, H. P. (1978) On orographic precipitation. In Climatic Networks: Proceedings of the Workshop and Annual Meeting of the Alberta Climatological Association. Inform. Rep., NOR-X-209. Edmonton, Alberta: Fisheries and Environment Canada, Northern Forest Research Centre, pp. 82–121.Google Scholar
Woods, C. P., et al. (2005) Microphysical processes and synergistic interactions between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon Cascades. J. Atmos. Sci., 62(10), 3493–519.CrossRefGoogle Scholar
World Meteorological Organization (1956) International Cloud Atlas, (abridged). Geneva: World Meteorological Organization.
World Meteorological Organization (1975) Manual on the Observation of Clouds and Other Meteors: International Cloud Atlas, Vol. I. Geneva: World Meteorological Organization, No. 407.
World Meteorological Organization (1984) Guide to Hydrological Practices, Vol. 1. Data Acquisition and Processing (4th edn). Geneva: World Meteorological Organization, No. 168.
World Meteorological Organization (1987) International Cloud Atlas, Vol. 2. Plates. Geneva: World Meteorological Organization, No. 407, 212 pp.
Yang, D.-Q., et al. (2000) An evaluation of the Wyoming gauge system for snowfall measurement. Water Resour. Res., 36(9), 2665–77.CrossRefGoogle Scholar
Yang, D.-Q., et al. (2001) Compatibility evaluation of national precipitation measurements. J. Geophys. Res., 106(D2), 1481–91,CrossRefGoogle Scholar
Yoshino, M. M. (1975) Climate in a Small Area: An Introduction to Local Meteorology. Tokyo: University of Tokyo Press, 549 pp; pp. 429–34.Google Scholar
Yoshino, M. M. (1984) Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. Geojournal, 8, 23–50.CrossRefGoogle Scholar
Young, K. C. (1974) A numerical simulation of wintertime orographic precipitation. J. Atmos. Sci., 31, 1735–48; 1749–67.2.0.CO;2>CrossRefGoogle Scholar
Zängl, G. (2005a) The impact of lee-side stratification on the spatial distribution of orographic precipitation. Q. J. R. Met. Soc., 131, 1075–91.CrossRefGoogle Scholar
Zängl, G. (2005b) Dynamical aspects of winter-time cold pools in an Alpine valley system. Mon. Wea. Rev., 133(9), 2721–40.CrossRefGoogle Scholar
Zehnder, J., et al. (2006) Using digital cloud photogrammmetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134(9), 2527–46.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×