Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T21:36:48.517Z Has data issue: false hasContentIssue false

4 - Trapping and cooling of atoms

Published online by Cambridge University Press:  06 July 2010

C. J. Pethick
Affiliation:
Nordic Institute for Theoretical Physics, Copenhagen
H. Smith
Affiliation:
University of Copenhagen
Get access

Summary

The advent of the laser opened the way to the development of powerful new methods for manipulating and cooling atoms which were exploited in the realization of Bose–Einstein condensation in alkali atom vapours. To set the stage we describe a typical experiment, which is shown schematically in Fig. 4.1. A beam of sodium atoms emerges from an oven at a temperature of about 600 K, corresponding to a speed of about 800 m s–1, and is then passed through a so-called Zeeman slower, in which the velocity of the atoms is reduced to about 30 m s–1, corresponding to a temperature of about 1 K. In the Zeeman slower, a laser beam propagates in the direction opposite that of the atomic beam, and the radiation force produced by absorption of photons retards the atoms. Due to the Doppler effect, the frequency of the atomic transition in the laboratory frame is not generally constant, since the atomic velocity varies. However, by applying an inhomogeneous magnetic field designed so that the Doppler and Zeeman effects cancel, the frequency of the transition in the rest frame of the atom may be held fixed. On emerging from the Zeeman slower the atoms are slow enough to be captured by a magneto-optical trap (MOT), where they are further cooled by interactions with laser light to temperatures of order 100 μK. Another way of compensating for the changing Doppler shift is to increase the laser frequency in time, which is referred to as ‘chirping’. In other experiments the MOT is filled by transferring atoms from a second MOT where atoms are captured directly from the vapour.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×