Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T21:37:13.030Z Has data issue: false hasContentIssue false

13 - Interference and correlations

Published online by Cambridge University Press:  06 July 2010

C. J. Pethick
Affiliation:
Nordic Institute for Theoretical Physics, Copenhagen
H. Smith
Affiliation:
University of Copenhagen
Get access

Summary

Bose–Einstein condensates of particles behave in many ways like coherent radiation fields, and the realization of Bose–Einstein condensation in dilute gases has opened up the experimental study of many aspects of interactions between coherent matter waves. In addition, the existence of these dilute trapped quantum gases has prompted a re-examination of a number of theoretical issues. This field is a vast one, and in this chapter we shall touch briefly on selected topics.

In Sec. 13.1 we describe the classic interference experiment, in which two clouds of atoms are allowed to expand and overlap. Rather surprisingly, an interference pattern is produced even though initially the two clouds are completely isolated. We shall analyse the reasons for this effect. The marked decrease in density fluctuations in a Bose gas when it undergoes Bose–Einstein condensation is demonstrated in Sec. 13.2. Gaseous Bose–Einstein condensates can be manipulated by lasers, and this has made possible the study of coherent matter wave optics. We describe applications of these techniques to observe solitons, Bragg scattering, and non-linear mixing of matter waves in Sec. 13.3. The atom laser and amplification of matter waves is taken up in Sec. 13.4. How to characterize Bose–Einstein condensation microscopically is the subject of Sec. 13.5, where we also consider fragmented condensates.

Interference of two condensates

One of the striking manifestations of the wave nature of Bose–Einstein condensates is the observation of an interference pattern when two condensed and initially separated clouds are allowed to overlap. An example is shown in Fig. 13.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×