Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T21:13:05.063Z Has data issue: false hasContentIssue false

9 - Plasma radiation

Published online by Cambridge University Press:  06 July 2010

T. J. M. Boyd
Affiliation:
University of Essex
J. J. Sanderson
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Introduction

We know from classical electrodynamics that accelerated charged particles are sources of electromagnetic radiation. Particles accelerated in electric or magnetic fields radiate with distinct characteristics. Electric micro-fields present in the plasma result in bremsstrahlung emission by plasma electrons. External radiation fields interacting with the plasma give rise to scattered radiation. Charged particles moving in magnetic fields emit cyclotron or synchrotron radiation, depending on the energy range of the particles.

The interaction of radiation with plasmas in all its aspects – emission, absorption, scattering and transport – is a key to understanding many effects in both laboratory and natural plasmas. Laboratory plasmas in particular do not radiate as black bodies so that an integrated treatment of emission, absorption and transport of radiation is usually needed. Core plasma parameters such as electron and ion temperatures and densities as well as plasma electric and magnetic fields may all be determined spectroscopically, in the most general sense of the term. Rather arbitrarily we shall confine our discussion to radiation from fully ionized plasmas thus excluding line radiation on which many diagnostic procedures are based. To some extent alternative spectroscopic techniques, in particular light scattering, have replaced if not entirely supplanted measurements of line radiation as preferred diagnostics of some key parameters in fusion plasmas (see Hutchinson (1988)). In the course of this chapter we shall outline the basis of some of these diagnostics, notably those that rely on bremsstrahlung and cyclotron radiation as well as those involving light scattering. We shall limit our discussion of radiation to plasmas in thermal equilibrium, with few exceptions. Non-thermal emission, while an important issue in practice, is in many instances still relatively poorly understood.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Plasma radiation
  • T. J. M. Boyd, University of Essex, J. J. Sanderson, University of St Andrews, Scotland
  • Book: The Physics of Plasmas
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755750.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Plasma radiation
  • T. J. M. Boyd, University of Essex, J. J. Sanderson, University of St Andrews, Scotland
  • Book: The Physics of Plasmas
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755750.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Plasma radiation
  • T. J. M. Boyd, University of Essex, J. J. Sanderson, University of St Andrews, Scotland
  • Book: The Physics of Plasmas
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755750.010
Available formats
×