Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T11:31:25.678Z Has data issue: false hasContentIssue false

6 - Waves in unbounded homogeneous plasmas

Published online by Cambridge University Press:  06 July 2010

T. J. M. Boyd
Affiliation:
University of Essex
J. J. Sanderson
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Introduction

Historically studies of wave propagation in plasmas have provided one of the keystones in the development of plasma physics and they remain a focus in contemporary research. Much was already known about plasma waves long before the subject itself had any standing, early studies being prompted by practical concerns. The need to allow for the effect of the geomagnetic field in determining propagation characteristics of radio waves led to the development, by Hartree in 1931, of what has become known as Appleton–Hartree theory. About the same time another basic plasma mode, electron plasma oscillations, had been identified. In 1926 Penning suggested that oscillations of electrons in a gas discharge could account for the anomalously rapid scattering of electron beams, observed over distances much shorter than a collisional mean free path. These oscillations were studied in detail by Langmuir and were identified theoretically by Tonks and Langmuir in 1928.

Alfvén's pioneering work in the development of magnetohydrodynamics led him to the realization in 1942 that magnetic field lines, pictured as elastic strings under tension, should support a class of magnetohydrodynamic waves. The shear Alfvén wave, identified in Section 4.8, first appeared in Alfvén's work on cosmical electrodynamics. Following the development of space physics we now know that Alfvén (and other) waves pervade the whole range of plasmas in space from the Earth's ionosphere and magnetosphere to the solar wind and the Earth's bow shock and beyond.

There is a bewildering collection of plasma waves and schemes for classifying the various modes are called for. Plasma waves whether in laboratory plasmas or in space are in general non-linear features.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×