Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T06:02:32.321Z Has data issue: false hasContentIssue false

3 - Phase space methods

Published online by Cambridge University Press:  06 July 2010

Holger Kantz
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Thomas Schreiber
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Get access

Summary

Determinism: uniqueness in phase space

The nonlinear time series methods discussed in this book are motivated and based on the theory of dynamical systems; that is, the time evolution is defined in some phase space. Since such nonlinear systems can exhibit deterministic chaos, this is a natural starting point when irregularity is present in a signal. Eventually, one might think of incorporating a stochastic component into the description as well. So far, however, we have to assume that this stochastic component is small and essentially does not change the nonlinear properties. Thus all the successful approaches we are aware of either assume the nonlinearity to be a small perturbation of an essentially linear stochastic process, or they regard the stochastic element as a small contamination of an essentially deterministic, nonlinear process. If a given data set is supposed to stem from a genuinely non-linear stochastic processes, time series analysis tools are still very limited and their discussion will be postponed to Section 12.1.

Consider for a moment a purely deterministic system. Once its present state is fixed, the states at all future times are determined as well. Thus it will be important to establish a vector space (called a state space or phase space) for the system such that specifying a point in this space specifies the state of the system, and vice versa. Then we can study the dynamics of the system by studying the dynamics of the corresponding phase space points. In theory, dynamical systems are usually defined by a set of first-order ordinary differential equations (see below) acting on a phase space.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Phase space methods
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Phase space methods
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Phase space methods
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.005
Available formats
×