Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T02:32:14.788Z Has data issue: false hasContentIssue false

2 - Linear tools and general considerations

Published online by Cambridge University Press:  06 July 2010

Holger Kantz
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Thomas Schreiber
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Get access

Summary

Stationarity and sampling

Quite generally, a scientific measurement of any kind is in principle more useful the more it is reproducible. We need to know that the numbers we measure correspond to properties of the studied object, up to some measurement error. In the case of time series measurements, reproducibility is closely connected to two different notions of stationarity.

The weakest but most evident form of stationarity requires that all parameters that are relevant for a system's dynamics have to be fixed and constant during the measurement period (and these parameters should be the same when the experiment is reproduced). This is a requirement to be fulfilled not only by the experimental set-up but also by the process taking place in this fixed environment. For the moment this might be puzzling since one usually expects that constant external parameters induce a stationary process, but in fact we will confront you in several places in this book with situations where this is not true. If the process under observation is a probabilistic one, it will be characterised by probability distributions for the variables involved. For a stationary process, these probabilities may not depend on time. The same holds if the process is specified by a set of transition probabilities between different states. If there are deterministic rules governing the dynamics, these rules must not change during the time covered by a time series.

In some cases, we can handle a simple change of a parameter once this change is noticed. If the calibration of the measurement apparatus drifts, for example, we can try to rescale the data continuously in order to keep the mean and variance constant.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×