Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T19:33:53.656Z Has data issue: false hasContentIssue false

11 - More about invariant quantities

Published online by Cambridge University Press:  06 July 2010

Holger Kantz
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Thomas Schreiber
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Get access

Summary

In the first part of this book we introduced two important concepts to characterise deterministic chaos: the maximal Lyapunov exponent and the correlation dimension. We stressed that one of the main reasons for their relevance is the invariance under smooth transformations of the state space. Irrespective of the details of the measurement process and of the reconstruction of the state space, they will always assume the same values. Of course, this is strictly true only for ideal, noise-free and infinitely long time series, but a good algorithm applied to an approximately noise-free and sufficiently long data set should yield results which are robust against small changes in the parameters of the algorithm.

The maximal Lyapunov exponent and the correlation dimension are only two members of a large family of invariants, singled out mainly because they are the two quantities which can best be computed from experimental data. In this chapter we want to introduce a more complete set of invariants which characterises the stability of trajectories and the geometrical and information theoretical properties of the invariant measure on an attractor. These are the spectrum of Lyapunov exponents and the generalised dimensions and entropies. These quantities possess interesting interrelations, the Kaplan–Yorke formula and Pesin's identity. Since these relations provide cross-checks of the numerical estimates, they are of considerable importance for a consistent time series analysis in terms of nonlinear statistics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • More about invariant quantities
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • More about invariant quantities
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • More about invariant quantities
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.013
Available formats
×