Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T19:26:37.372Z Has data issue: false hasContentIssue false

12 - Modelling and forecasting

Published online by Cambridge University Press:  06 July 2010

Holger Kantz
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Thomas Schreiber
Affiliation:
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Get access

Summary

When we try to build a model of a system, we usually have the ultimate goal of establishing the equations of motion which describe the underlying system in terms of meaningful quantities. Writing down the behaviour of the relevant components of the system in a mathematical language, we try to combine all we know about their actions and interactions. This approach may allow one to construct a simplified but useful image of what happens in nature. Most of the knowledge we have about the inherent mechanisms has been previously derived from measurements. We call such models phenomenological models. In some cases, as in classical mechanics, one is able to derive a dynamical model from first principles, but even the so-called first principles have to be consistent with the empirical observations.

In order to establish a useful phenomenological model, one needs specialised knowledge about the system under study. Therefore, the right place to explain how to make a model for the time variations of some animal population is a book on population biology. On the other hand, there are techniques for constructing models that are based almost purely on time series data. These techniques are generally applicable and thus we consider their treatment appropriate for this book.

The problem treated in this chapter lies at the heart of time series analysis. What can we infer about the dynamical laws governing a system, given a sequence of observations of one or a few time variable characteristics of the system? We suppose that the external knowledge about the system is limited to some assumptions that we may make about the general structure of these laws.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Modelling and forecasting
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Modelling and forecasting
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Modelling and forecasting
  • Holger Kantz, Max-Planck-Institut für Physik komplexer Systeme, Dresden, Thomas Schreiber, Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • Book: Nonlinear Time Series Analysis
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755798.014
Available formats
×