Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T17:44:32.410Z Has data issue: false hasContentIssue false

4 - Time-resolved FRET approaches to study GPCR complexes

from PART II - OLIGOMERIZATION OF GPCRS

Published online by Cambridge University Press:  05 June 2012

Jean Philippe Pin
Affiliation:
Institut de Génomique Fonctionnelle
Damien Maurel
Affiliation:
Ecole Polytechnique Fédérale de Lausane
Laetitia Comps-Agrar
Affiliation:
Institut de Génomique Fonctionnelle
Carine Monnier
Affiliation:
Institut de Génomique Fonctionnelle
Marie-Laure Rives
Affiliation:
Columbia University
Etienne Doumazane
Affiliation:
Institut de Génomique Fonctionnelle
Philippe Rondard
Affiliation:
Institut de Génomique Fonctionnelle
Thierry Durroux
Affiliation:
Institut de Génomique Fonctionnelle
Laurent Prézeau
Affiliation:
Institut de Génomique Fonctionnelle
Erin Trinquet
Affiliation:
Parc technologique Marcel Boiteux
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 67 - 89
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockaert, J, Pin, J-P (1999) Molecular tinkering of G-protein coupled receptors: an evolutionary success. EMBO J 18:1723–1729.CrossRefGoogle Scholar
Fredriksson, R, Lagerstrom, MC, Lundin, LG, Schioth, HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272.CrossRefGoogle ScholarPubMed
Overington, JP, Al-Lazikani, B, Hopkins, AL (2006) How many drug targets are there?Nat Rev Drug Discov 5:993–996.CrossRefGoogle Scholar
Chabre, M, Maire, M (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44:9395–9403.CrossRefGoogle ScholarPubMed
Bayburt, THLeitz, AJ, Xie, G, Oprian, DD, Sligar, SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881.CrossRefGoogle ScholarPubMed
Ernst, OP, Gramse, V, Kolbe, M, Hofmann, KP, Heck, M (2007) Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A 104:10859–10864.CrossRefGoogle ScholarPubMed
Whorton, MR, Bokoch, MP, Rasmussen, SG, Huang, B, Zare, RN, Kobilka, B, Sunahara, RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104: 7682–7687.CrossRefGoogle Scholar
Whorton, MR, Jastrzebska, B, Park, PS, Fotiadis, D, Engel, A, Palczewski, K, Sunahara, RK (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394.CrossRefGoogle Scholar
Bouvier, M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2:274–286.CrossRefGoogle ScholarPubMed
Milligan, G (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7.CrossRefGoogle ScholarPubMed
Gurevich, VV, Gurevich, EV (2008a) GPCR monomers and oligomers: it takes all kinds. Trends Neurosci 31:74–81.CrossRefGoogle ScholarPubMed
Gurevich, VV, Gurevich, EV (2008b) How and why do GPCRs dimerize?Trends Pharmacol Sci 29:234–240.CrossRefGoogle ScholarPubMed
Pin, J-P, Galvez, T, Prézeau, L (2003) Evolution, structure and activation mechanism of family 3/C G-protein coupled receptors. Pharmacol Ther 98:325–354.CrossRefGoogle ScholarPubMed
Pin, J-P, Kniazeff, J, Liu, J, Binet, V, Goudet, C, Rondard, P, Prézeau, L (2005) Allosteric functioning of dimeric Class C G-protein coupled receptors. FEBS J 272:2947–2955.CrossRefGoogle ScholarPubMed
Rondard, P, Huang, S, Monnier, C, Tu, H, Blanchard, B, Oueslati, N, Malhaire, F, Li, Y, Maurel, D, Trinquet, E, Labesse, G, Pin, J-P, Liu, J (2008) Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning. EMBO J 27:1321–1332.CrossRefGoogle Scholar
Kniazeff, J, Bessis, A-S, Maurel, D, Ansanay, H, Prezeau, L, Pin, J-P (2004) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Str Mol Biol 11:706–713.CrossRefGoogle ScholarPubMed
Tateyama, M, Abe, H, Nakata, H, Saito, O, Kubo, Y (2004) Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1alpha. Nat Struct Mol Biol 11:637–642.CrossRefGoogle ScholarPubMed
Ferre, S, Baler, R, Bouvier, M, Caron, MG, Devi, , Durroux, T, Fuxe, K, George, SR, Javitch, JA, Lohse, MJ, Mackie, K, Milligan, G, Pfleger, KD, Pin, JP, Volkow, ND, Waldhoer, M, Woods, AS, Franco, R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134.CrossRefGoogle ScholarPubMed
Pin, J-P, Neubig, RR, Bouvier, M, Devi, L, Filizola, M, Javitch, JA, Lohse, MJ, Milligan, G, Palczewski, K, Parmentier, M, Spedding, M (2007) International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 59:5–13.CrossRefGoogle ScholarPubMed
Rives, M-L, Vol, C, Tinel, N, Trinquet, E, Ayoub, MA, Pin, J-P, Prézeau, L (2009) Cross talk between GABAB and mGlu1a receptors reveals new insights on GPCRs signal integration. EMBO J 28:2195–2208.CrossRefGoogle Scholar
Milligan, G, Bouvier, M (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–2925.CrossRefGoogle ScholarPubMed
Selvin, PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302.CrossRefGoogle ScholarPubMed
Förster, T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75.CrossRefGoogle Scholar
Stryer, L, Haugland, RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726.CrossRefGoogle ScholarPubMed
Stryer, L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846.CrossRefGoogle ScholarPubMed
Vogel, SS, Thaler, C, Koushik, SV (2006) Fanciful FRET. Sci STKE 2006:re2.Google ScholarPubMed
Maurel, D, Kniazeff, J, Mathis, G, Trinquet, E, Pin, JP, Ansanay, H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329:253–262.CrossRefGoogle ScholarPubMed
McVey, M, Ramsay, D, Kellett, E, Rees, S, Wilson, S, Pope, AJ, Milligan, G (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276:14092–14099.CrossRefGoogle Scholar
Wilson, S, Wilkinson, G, Milligan, G (2005) The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem 280:28663–28674.CrossRefGoogle ScholarPubMed
Bakker, RA, Dees, G, Carrillo, JJ, Booth, RG, Lopez-Gimenez, JF, Milligan, G, Strange, PG, Leurs, R (2004) Domain swapping in the human histamine H1 receptor. J Pharmacol Exp Ther 311:131–138.CrossRefGoogle ScholarPubMed
Rijn, RM, Chazot, PL, Shenton, FC, Sansuk, K, Bakker, RA, Leurs, R (2006) Oligomerization of recombinant and endogenously expressed human histamine H(4) receptors. Mol Pharmacol 70:604–615.CrossRefGoogle ScholarPubMed
Carrillo JJ, Lopez-Gimenez JF, Milligan, G (2004) Multiple interactions between transmembrane helices generate the oligomeric alpha1b-adrenoceptor. Mol Pharmacol 66:1123–1137.CrossRefGoogle ScholarPubMed
Ramsay, D, Carr, IC, Pediani, J, Lopez-Gimenez, JF, Thurlow, R, Fidock, M, Milligan, G (2004) High-affinity interactions between human alpha1A-adrenoceptor C-terminal splice variants produce homo- and heterodimers but do not generate the alpha1L-adrenoceptor. Mol Pharmacol 66:228–239.CrossRefGoogle Scholar
Ciruela, F, Casado, V, Rodrigues, RJ, Lujan, R, Burgueno, J, Canals, M, Borycz, J, Rebola, N, Goldberg, SR, Mallol, J, Cortes, A, Canela, EI, Lopez-Gimenez, JF, Milligan, G, Lluis, C, Cunha, RA, Ferre, S, Franco, R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087.CrossRefGoogle ScholarPubMed
Goudet, C, Kniazeff, J, Hlavackova, V, Malhaire, F, Maurel, D, Acher, F, Blahos, J, Prézeau, L, Pin, J-P (2005) Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J Biol Chem 280:24380–24385.CrossRefGoogle ScholarPubMed
Hlavackova, V, Goudet, C, Kniazeff, J, Zikova, A, Maurel, D, Vol, C, Trojanova, J, Prézeau, L, Pin, J-P, Blahos, J (2005) Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J 24:499–509.CrossRefGoogle ScholarPubMed
Rondard, P, Liu, J, Huang, S, Malhaire, F, Vol, C, Pinault, A, Labesse, G, Pin, J-P (2006) Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors. J Biol Chem 281:24653–24661.CrossRefGoogle ScholarPubMed
Brock, C, Oueslati, N, Soler, S, Boudier, L, Rondard, P, Pin, J-P (2007) Activation of a Dimeric Metabotropic Glutamate Receptor by Inter-Subunit Rearrangement. J Biol Chem 282:33000–33008.CrossRefGoogle Scholar
Maurel, D, Comps-Agrar, L, Brock, C, Rives, ML, Bourrier, E, Ayoub, MA, Bazin, H, Tinel, N, Durroux, T, Prezeau, L, Trinquet, E, Pin, JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567.CrossRefGoogle ScholarPubMed
Pegg, AE, Dolan, ME (1987) Properties and assay of mammalian O6-alkylguanine-DNA alkyltransferase. Pharmacol Ther 34:167–179.CrossRefGoogle ScholarPubMed
Daniels, DS, Mol, CD, Arvai, AS, Kanugula, S, Pegg, AE, Tainer, JA (2000) Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J 19:1719–1730.CrossRefGoogle ScholarPubMed
Pegg, AE, Swenn, K, Chae, MY, Dolan, ME, Moschel, RC (1995) Increased killing of prostate, breast, colon, and lung tumor cells by the combination of inactivators of O6-alkylguanine-DNA alkyltransferase and N,N'-bis(2-chloroethyl)-N-nitrosourea. Biochem Pharmacol 50:1141–1148.CrossRefGoogle Scholar
Juillerat, A, Gronemeyer, T, Keppler, A, Gendreizig, S, Pick, H, Vogel, H, Johnsson, K (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317.CrossRefGoogle ScholarPubMed
Keppler, A, Gendreizig, S, Gronemeyer, T, Pick, H, Vogel, H, Johnsson, K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89.CrossRefGoogle ScholarPubMed
Keppler, A, Pick, H, Arrivoli, C, Vogel, H, Johnsson, K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101:9955–9959.CrossRefGoogle ScholarPubMed
Juillerat, A, Heinis, C, Sielaff, I, Barnikow, J, Jaccard, H, Kunz, B, Terskikh, A, Johnsson, K (2005) Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. Chembiochem 6:1263–1269.CrossRefGoogle ScholarPubMed
Gronemeyer, T, Chidley, C, Juillerat, A, Heinis, C, Johnsson, K (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19:309–316.CrossRefGoogle ScholarPubMed
Gautier, A, Juillerat, A, Heinis, C, Correa, IR Jr., Kindermann, M, Beaufils, F, Johnsson, K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136.CrossRefGoogle ScholarPubMed
George, N, Pick, H, Vogel, H, Johnsson, N, Johnsson, K (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126:8896–8897.CrossRefGoogle ScholarPubMed
Yin, J, Liu, F, Li, X, Walsh, CT (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126:7754–7755.CrossRefGoogle ScholarPubMed
Monnier, C, Bourrier, E, Vol, C, Lamarque, L, Trinquet, E, Pin, J, Rondard, P (2010) Transactivation between two 7TM domains: a key step in heterodimeric GABAB receptor activation under revision.
Meyer, BH, Segura, JM, Martinez, KL, Hovius, R, George, N, Johnsson, K, Vogel, H (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci U S A 103:2138–2143.CrossRefGoogle ScholarPubMed
Fotiadis, D, Liang, Y, Filipek, S, Saperstein, DA, Engel, A, Palczewski, K (2003) Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421:127–128.CrossRefGoogle ScholarPubMed
Lopez-Gimenez, JF, Canals, M, Pediani, JD, Milligan, G (2007) The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71:1015–1029.CrossRefGoogle ScholarPubMed
Carriba, P, Navarro, G, Ciruela, F, Ferre, S, Casado, V, Agnati, L, Cortes, A, Mallol, J, Fuxe, K, Canela, EI, Lluis, C, Franco, R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5:727–733.CrossRefGoogle ScholarPubMed
Guo, W, Urizar, E, Kralikova, M, Mobarec, JC, Shi L, Filizola M, Javitch, JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27:2293–2304.CrossRefGoogle ScholarPubMed
Brock, C, Boudier, L, Maurel, D, Blahos, J, Pin, J-P (2005) Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI, but not 14–3–3. Mol Biol Cell 16:5572–5578.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×