Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-08T03:34:28.327Z Has data issue: false hasContentIssue false

5 - Signaling of dopamine receptor homo- and heterooligomers

from PART II - OLIGOMERIZATION OF GPCRS

Published online by Cambridge University Press:  05 June 2012

Ahmed Hasbi
Affiliation:
University of Toronto
Brian F. O'Dowd
Affiliation:
University of Toronto
Susan R. George
Affiliation:
University of Toronto
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 90 - 110
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gainetdinov, RR and Caron, MG. (2001). Genetics of childhood disorders: XXIV. ADHD, part 8: hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry 40:380–382.CrossRefGoogle ScholarPubMed
Nestler, EJ (2001). Molecular basis of neural plasticity underlying addiction. Nat Rev Neurosci 2:119–128.CrossRefGoogle ScholarPubMed
Neve, KA, et al. (2004). Dopamine receptor signaling. J Recept Signal Transduct Res 24:165–205.CrossRefGoogle ScholarPubMed
Aizman, O, Brismar, H, Uhlen, P, Zettergren, E, Levey, AI, et al. (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3:226–230.CrossRefGoogle ScholarPubMed
Agnati, LF, Franzen, O, Ferre, S, Franco, R, and Fuxe, K (2003). Possible role of intramembrane receptor/receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in basal ganglia. J Neural Transm 65:195–222.Google Scholar
Zarrindast, MR, Azami, B, Rostami, P, Rezayof, A (2006). Repeated administration of dopaminergic agents in the nucleus accumbens and morphine-induced place preference. Behav Brain Res 169:248–255.CrossRefGoogle ScholarPubMed
Zoli, M, Agnati, LF, Hedlund, PB, Li, XM, Ferre, S, and Fuxe, K (1993). Receptor/receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol 7:293–334.CrossRefGoogle Scholar
Gerfen, CR (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320.CrossRefGoogle ScholarPubMed
Gerfen, CR (2004). The basal ganglia in the rat nervous system, Ed 3 (Paxinos, G, ed), pp 455–508. New York: Academic.
Ng, GY, George, SR, Zastawny, RL, Caron, M, Bouvier, M, Dennis, M, and O ' Dowd, BF (1993). Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry 32: 11727–11733.CrossRef
Ferre, S, Ciruela, F, Canals, M, Marcellino, D, Burgueno, J, Casado, V, Hillion, J, Torvinen, M, Fanelli, F, Benedetti, P, Goldberg, SR, Bouvier, M, Fuxe, K, Agnati, LF, Lluis, C, Franco, R, and Woods, A (2004). Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuropsychiatric disorders. Parkinsonism Relat Disord 10: 265–271.CrossRefGoogle Scholar
Pei, L, Lee, FJ, Moszczynska, A, Vukusic, B, and Liu, F (2004). Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 24:1149–1158.CrossRefGoogle ScholarPubMed
Beaulieu, JM, Sotnikova, TD, Marion, S, Lefkowitz, RJ, Gainetdinov, RR, and Caron, MG (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273.CrossRefGoogle ScholarPubMed
Lee, FJ and Liu, F (2004). Direct interactions between NMDA and D1 receptors: a tale of tails. Biochem Soc Trans 32:1032–1036.CrossRefGoogle ScholarPubMed
George, SR and O'Dowd, BF (2007). Novel dopamine receptor signaling unit in brain: heterooligomers of D1 and D2 dopamine receptors. Scient World J 7:58–63.CrossRefGoogle ScholarPubMed
Rocheville, M, Lange, DC, Kumar, U, Patel, SC, Patel, RC, and Patel, YC (2000). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science (Wash DC) 288:154–157.CrossRefGoogle ScholarPubMed
Ferre, S, Baler, R, Bouvier, M, Caron, MG, Devi, , Durroux, T, Fuxe, K, George, SR, Javitch, JA, Lohse, MJ, Mackie, K, Milligan, G, Pfleger, KD, Pin, JP, Volkow, ND, Waldhoer, M, Woods, AS, and Franco, R (2009). Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134.CrossRefGoogle ScholarPubMed
Bouvier, M (2001). Oligomerization of G-protein-coupled transmitter receptors. Nat Neurosci 2:274–286.CrossRefGoogle ScholarPubMed
George, SR, O'Dowd, BF, and Lee, SP (2002). G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev Drug Discov 1:808–820.CrossRefGoogle ScholarPubMed
Missale, C, Nash, SR, Robinson, SW, Jaber, M, and Caron, MG (1998). Dopamine receptors: from structure to function. Physiol Rev 78:189–225.CrossRefGoogle ScholarPubMed
Wayman, GA, Lee, YS, Tokumitsu, H, Silva, A, and Soderling, TR (2008). Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931.CrossRefGoogle ScholarPubMed
Ng, GY, O'Dowd, BF, Lee, SP, Chung, HT, Brann, MR, Seeman, P, and George, SR (1996). Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem BiophysRes Commun 227:200–204.Google ScholarPubMed
Nimchinsky, EA, Hof, PR, Janssen, WG, Morrison, JH, and Schmauss, C (1997). Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 272:29229–29237.CrossRefGoogle ScholarPubMed
George, SR, Lee, SP, Varghese, G, Zeman, PR, Seeman, P, Ng, GY, and O'Dowd, BF (1998). A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J Biol Chem 273:30244–30248.CrossRefGoogle ScholarPubMed
Zhang, J, Vinuela, A, Neely, MH, Hallett, PJ, Grant, SG, Miller, GM, Isacson, O, Caron, MG, and Yao, WD (2007). Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 282:15778–15789.CrossRefGoogle ScholarPubMed
Lee, SP, Xie, Z, Varghese, G, Nguyen, T, O'Dowd, BF, and George, SR (2000). Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology 23:S32–S40.CrossRefGoogle ScholarPubMed
Guo, W, Urizar, E, Kralikova, M, Mobarec, JC, Shi, L, Filizola, M, and Javitch, JA (2008). Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO Journal 27:2293–2304.CrossRefGoogle ScholarPubMed
Harsing, LG and Zigmond, MJ (1997). Influence of dopamine on GABA release in striatum: Evidence for D1-D2 interactions and non-synaptic influences. Neuroscience 77:419–429.CrossRefGoogle ScholarPubMed
Pacheco, MA and Jope, RS (1997). Comparison of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis in postmortem human brain membranes and characterization of stimulation by dopamine D1 receptors. J Neurochem 69:639–644.CrossRefGoogle Scholar
O'Dowd, BF, Ji, X, Alijaniaram, M, Rajaram, RD, Kong, MM, Rashid, A, Nguyen, T, and George, SR (2005). Dopamine receptor oligomerization visualized in living cells. J Biol Chem 280:37225–37235.CrossRefGoogle ScholarPubMed
Jans, DA, Xiao, CY, and Lam, MH (2000). Nuclear targeting signal recognition: a key control point in nuclear transport?Bioessays 22, 532–544.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Guo W, Shi L, and Javitch, JA (2003). The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem 278: 4385–4388.CrossRefGoogle ScholarPubMed
Kong, MM, Fan, T, Varghese, G, O ' Dowd, BF, and George SR (2006). Agonist-induced cell surface trafficking of an intracellularly sequestered D1 dopamine receptor homooligomer. Mol Pharmacol 70, 78–89.
Kong, MM, Hasbi, A, Mattocks, M, Fan, T, O'Dowd, BF, and George, SR (2007). Regulation of D1 dopamine receptor trafficking and signaling by caveolin-1. Mol Pharmacol 72:1157–1170.CrossRefGoogle ScholarPubMed
O'Dowd, BF, Alijaniaram, M, Ji, X, Nguyen, T, Eglen, RM, George, SR (2007). Using ligand-induced conformational change to screen for compounds targeting G-protein-coupled receptors. J Biomol Screen 12:175–185.CrossRefGoogle ScholarPubMed
Agnati, LF, Ferre, S, Lluis, C, Franco, R, and Fuxe, K (2003). Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev 55:509–550.Google ScholarPubMed
Franco, R, Lluis, C, Canela, EI, Mallol, J, Agnati, L, Casado, V, Ciruela, F, Ferre, S, and Fuxe, K (2007). Receptor–receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm 114: 93–104CrossRefGoogle ScholarPubMed
Fuxe, K, Stromberg, I, Popoli, P, Rimondini-Giorgini, R, Torvinen, M, Ogren, SO, FrancoR, Agnati LF, and Ferre, S (2001). Adenosine receptors and Parkinson's disease. Relevance of antagonistic adenosine and dopamine receptor interactions in the striatum. Adv Neurol 86:345–353.Google ScholarPubMed
Ferre, S, Popoli, P, Gimenez-Llort, L, Finnman, U-B, Martinez, E, Scotti de Carolis, A, and Fuxe, K (1994). Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6:73–76.CrossRefGoogle ScholarPubMed
Fuxe, K, Ferre, S, Zoli, M, and Agnati, LF (1998). Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Rev 26:258–273.CrossRefGoogle Scholar
Franco, R, Ferre, S, Agnati, L, Torvinen, M, Gines, S, Hillion, J, Casado, V, Lledo, PM, Zoli, M, Lluis, C, et al. (2000). Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 23:S50–S59.CrossRefGoogle ScholarPubMed
Gines, S, Hillion, J, Torvinen, M, LeCrom, S, Casado, V, Canela, E, Rondin, S, Lew, J, Watson, S, Zoli, M, et al. (2000). Dopamine D1 and adenosine A1 receptors assemble into functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97: 8606–8611.CrossRefGoogle Scholar
Kanda, T, Jackson, MJ, Smith, , Pearce, RK, Nakamura, J, Kase, H, Kuwana, Y, and Jenner, P (2000). Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327.CrossRefGoogle Scholar
Koga, K, Kurokawa, M, Ochi, M, Nakamura, J, and Kuwana, Y (2000). Adenosine A(2A) receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur J Pharmacol 408:249–255.CrossRefGoogle Scholar
Ferre, S, Fuxe, K, Euler, G, Johansson, B, and Fredholm, BB (1992). Adenosine-dopamine interactions in the brain. Neuroscience 51: 501–512.CrossRefGoogle Scholar
Mayford, M, Bach, ME, Huang, YY, Wang, L, Hawkins, RD, Kandel, ER (1996). Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678–1683.CrossRefGoogle ScholarPubMed
Becker, A, Grecksch, G, Kraus, J, Peters, B, Schroeder, H, Schulz, S, Höllt, V. (2001). Loss of locomotor sensitisation in response to morphine in D1 receptor deficient mice. Naunyn Schmiedebergs Arch Pharmacol 363: 562–568.CrossRefGoogle ScholarPubMed
Dasgupta, S, Ferre, S, Kull, B, Hedlund, PB, Finnman, U-B, Ahlberg, S, Arenas, E, Fredholm, BB, and Fuxe, K (1996a). Adenosine A2A receptors modulate the binding characteristics of dopamine D2 receptors in stably cotransfected fibroblast cells. Eur J Pharmacol 316:325–331.CrossRefGoogle ScholarPubMed
Kull, B, Ferre, S, Arslan, G, Svenningsson, P, Fuxe, K, Owman, C, and Fredholm, BB (1999). Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. BiochemPharmacol 58:1035–1045.Google ScholarPubMed
Scarselli, M, Novi, F, Schallmach, E, Lin, R, Baragli, A, Colzi, A, Griffon, N, Corsini, GU, Sokoloff, P, Levenson, R, et al. (2001). D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem 276:30308–30314.CrossRefGoogle ScholarPubMed
Hillion, J, Canals, M, Torvinen, M, Casado, V, Scott, R, Terasmaa, A, Hansson, A, Watson, S, Olah, ME, Mallol, J, et al. (2002). Coaggregation, cointernalization and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J BiolChem 277:18091–18097.Google ScholarPubMed
Chen, JF, Moratalla, R, Impagnatiello, F, Grandy, DK, Cuellar, B, Rubinstein, M, Beilstein, MA, Hackett, E, Fink, JS, Low, MJ, et al. (2001). The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. Proc Natl Acad Sci USA 98:1970–1975.CrossRefGoogle Scholar
Canals, M, Marcellino, M, Fanelli, F, Ciruela, F, Benedetti, P, Goldberg, S, Fuxe, K, Agnati, LF, Woods, AS, Ferre, S, Lluis, C, Bouvier, M, and Franco, R (2003). Adenosine A2A-dopamine D2 receptor–receptor heteromerization. Qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278:46741–46749.CrossRefGoogle ScholarPubMed
Ciruela, F, Burgueno, J, Casado, V, Canals, M, Marcellino, D, Goldberg, SR, Bader, M, Fuxe, K, Agnati, LF, Lluis, C, Franco, R, Ferre, S, and Woods, AS (2004). Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 76:5354–5363.CrossRefGoogle Scholar
Ferre, S (1997). Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology 133:107–120.Google ScholarPubMed
Dıaz-Cabiale, Z, Hurd, Y, Guidolin, D, Finnman, UB, Zoli, M, Agnati, LF, Vanderhaeghen, JJ, Fuxe, K, and Ferre, S (2001). Adenosine A2A agonist CGS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum. Neuroreport 12:1831–1834.CrossRefGoogle ScholarPubMed
Gu, WH, Yang, S, Shi, WX, Jin, GZ, Zhen, XC. (2007). Requirement of PSD-95 for dopamine D1 receptor modulating glutamate NR1a/NR2B receptor function. Acta Pharmacol Sin 28: 756–762.CrossRefGoogle ScholarPubMed
Juhasz, JR, Hasbi A, Rashid AJ, So, CH, George, SR, and O'Dowd, BF (2008). Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. Europ J Pharm 581:235–243CrossRefGoogle ScholarPubMed
So, CH, Verma, V, O'Dowd, BF, and George, SR (2007). Desensitization of the dopamine D1 and D2 receptor heterooligomer mediated calcium signal by agonist occupancy of either receptor. Mol Pharmacol 72:450–462.CrossRefGoogle Scholar
Hnasko, TS, Sotak, B, and Palmiter, R (2005). Morphine reward in dopamine deficient mice. Nature 438:854–857.CrossRefGoogle ScholarPubMed
Zawarynski, P, Tallerico, T, Seeman, P, Lee, SP, O'Dowd, BF, and George, SR (1998). Dopamine D2 receptor dimers in human and rat brain. FEBS Lett 441:383–386.CrossRefGoogle ScholarPubMed
Barnard, EA, Skolnick, P, Olsen, RW, Mohler, H, Sieghart, W, Biggio, G, Braestrup, C, Bateson, AN, and Langer, SZ (1998). International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313.Google Scholar
Greengard, P, Nairn, A, Girault, JA, Ouimet, CC, Snyder, GL, Fisone, G, Allen, PB, Fienberg, A, and Nishi, A (1998). The DARPP-32/protein phosphate-1 cascade: a model for signal integration. Brain Res Rev 26:274–284.CrossRefGoogle Scholar
Greengard, P, Allen, PB, and Nairn, AC (1999). Beyond the dopamine receptor: the DARPP-32/protein pnosphatase-1 cascade. Neuron 23:435–447.CrossRefGoogle ScholarPubMed
Liu, F, Wan, Q, Pristupa, ZB, Yu, XM, Wang, YT, and Niznik, HB (2000). Direct protein-protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature 403:274–280.CrossRefGoogle ScholarPubMed
Radnikow, G and Misgeld, U (1998). Dopamine D1 receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata. J Neurosci 18:2009–2016.CrossRefGoogle ScholarPubMed
Rashid, AJ, O'Dowd, BF, Verma, V, and George, SR (2007b). Neuronal Gq/11-coupled dopamine receptors: an uncharted role for dopamine. TRENDS Pharmacol Sci 28:551–555.CrossRefGoogle ScholarPubMed
So, CH, Varghese, G, Curley, KJ, Kong, MM, Alijaniaram, M, Ji, X, Nguyen, T, O'Dowd, BF, and George, SR (2005). D1 and D2 dopamine receptors form heterooligomers and co-internalize after selective activation of either receptor. Mol Pharmacol 68:568–578.Google Scholar
Fiorentini, C, Gardoni, F, Spano, P, Di Luca, M, and Missale, C (2003). Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate Nmethyl-D-aspartate receptors. J Biol Chem 278: 20196–20202.CrossRefGoogle Scholar
Lee, FJ, Xue, S, Pei, L, Vukusic, B, Chery, N, Wang, Y, Wang, YT, Niznik, HB, Yu, XM, and Liu, F (2002). Dual regulation of NMDA receptor functions by direct protein protein interactions with the dopamine D1 receptor. Cell 111:219–230.CrossRefGoogle ScholarPubMed
Seeman, P, Niznik, HB, Guan, HC, Booth, G, and Ulpian, C (1989). Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain. Proc Natl Acad Sci USA 86:10156–10160.CrossRefGoogle ScholarPubMed
Piomelli, D, et al. (1991). Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature 353:164–167.CrossRefGoogle ScholarPubMed
Zhen, X, et al. (2004). Regulation of cyclin-dependent kinase 5 and calcium/calmodulin-dependent protein kinase II by phosphatidylinositol-linked dopamine receptor in rat brain. Mol Pharmacol 66:1500–1507.CrossRefGoogle ScholarPubMed
Robinson, SW, Caron, MG. (1997). Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor. Mol Pharmacol 52: 508–514.CrossRefGoogle ScholarPubMed
Bozzi, Y and Borrelli, E (2006). Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it?Trends Neurosci 29:167–174.CrossRefGoogle Scholar
Rongo, C and Kaplan, JM (1999). CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 402:195–199.CrossRefGoogle ScholarPubMed
Moine, C and Bloch, B (1996). Expression of the D3 dopamine receptor in peptideric neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73:131–143.CrossRefGoogle Scholar
Scott, L, Kruse, MS, Forssberg, H, Brismar, H, Greengard, P, and Aperia, A (2002). Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci USA 99:1661–1664.CrossRefGoogle ScholarPubMed
Karasinska, JM, George, SR, Cheng, R, and O ' Dowd, BF (2005). Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine-induced locomotor activity, reward and CREB phosphorylation. Eur J Neurosci 22:1741–1750.CrossRef
Schwartz, JC, Ridray, S, Bordet, R, Diaz, J, and Sokoloff, P (1998a). D1/D3 receptor relationships in brain: coexpression, coactivation, and coregulation. Adv Pharmacol 42:408–411.CrossRefGoogle ScholarPubMed
Fiorentini, C, Busi, C, Gorruso, E, Gotti, C, Spano, P, Missale, C (2008). Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 74:59–69.CrossRefGoogle ScholarPubMed
Mayfield, R, Larson, G, Orona, RA, and Zahniser, NR (1996). Opposing actions of adenosine A2a and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for an A2a/D2 receptor interaction in globus pallidus. Synapse 22:132–138.3.0.CO;2-E>CrossRefGoogle Scholar
Surmeier, DJ, Reiner, A, Levine, MS, and Ariano, MA (1993). Are neostriatal dopamine receptors co-localized?Trends Neurosci 16:299–305.CrossRefGoogle ScholarPubMed
Ridray, S, Griffon, N, Mignon, V, Souil, E, Carboni, S, Diaz, J, Schwartz, JC, and Sokoloff, P (1998). Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur J Neurosci 10:1676–1686.CrossRefGoogle ScholarPubMed
Bergson, C, Mrzljak, L, Smiley, JF, Pappy, M, Levenson, R, and Goldman-Rakic, PS. (1995). Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836.CrossRefGoogle ScholarPubMed
Schwartz, JC, Diaz, J, Bordet, R, Griffon, N, Perachon, S, Pilon, C, Ridray, S, and Sokoloff, P (1998b). Functional implications of multiple dopamine receptor subtypes: the D1/D3 receptor coexistence. Brain Res Rev 26:236–242.CrossRefGoogle ScholarPubMed
Łukasiewicz, S, Faron-Górecka, A, Dobrucki J, Polit A, Dziedzicka-Wasylewska, M. (2009). Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D1 and D2 receptor oligomerization. FEBS J 276: 760–775.CrossRefGoogle ScholarPubMed
Maggio, R, Vogel, Z, Wess, J. (1993). Reconstitution of functional muscarinic receptors by co-expression of amino- and carboxyl-terminal receptor fragments. FEBS Lett.;319: 195–200.CrossRefGoogle ScholarPubMed
Wang, HY, Undie, AS, and Friedman, E (1995). Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol. Pharmacol 48:988–994.Google Scholar
Wang, M, Lee, FJS, and Liu, F (2008). Dopamine receptor interacting proteins (DRIPs) of dopamine D1-like receptors in the central nervous system. MolCells 25:149–157.Google ScholarPubMed
Park, SK, Nguyen, MD, Fischer, A, Luke, MP, Affar el, B, et al. (2005). Par-4 links dopamine signaling and depression. Cell 122:275–287.CrossRefGoogle ScholarPubMed
Jin, LQ, Goswami, S, Cai G, Zhen X, and Friedman E (2003). SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J Neurochem 85:378–386.CrossRefGoogle ScholarPubMed
Undie, AS and Friedman, E (1990). Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 253:987–992.Google ScholarPubMed
Marcellino, D, Ferré, S, Casadó, V, Cortés, A, Foll, B, Mazzola, C, Drago, F, Saur, O, Stark, H, Soriano, A, Barnes, C, Goldberg, SR, Lluis, C, Fuxe, K, and Franco, R (2008). Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 283: 26016–26025.CrossRefGoogle ScholarPubMed
Poisbeau, P, Cheney, MC, Browning, MD, and Mody, I (1999). Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J Neurosci 19:674–683.CrossRefGoogle ScholarPubMed
Calabresi, P, Mercuri, N, Stanzione, P, Stefani, A, and Bernardi, G (1987). Intracellular studies on the dopamine induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 20:757–771.CrossRefGoogle ScholarPubMed
Capper-Loup, C, Canales, JJ, Kadaba, N, and Graybiel, AM (2002). Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J Neurosci 22:6218–6227.CrossRefGoogle ScholarPubMed
Tang, TS and Bezprozvanny, I (2004). Dopamine receptor-mediated Ca2+ signaling in striatal medium spiny neurons. J Biol Chem 279:42082–42094.CrossRefGoogle Scholar
Lee, SP, So, CH, Rashid, AJ, Varghese, G, Cheng, R, Lanca, AJ, O'Dowd, BF, and George, SR (2004). Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678.CrossRefGoogle ScholarPubMed
Hasbi, A, Fan, T, Alijaniaram, M, Nguyen, T, Perreault, ML, O'Dowd, BF, George, SR.(2009). Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc Natl Acad Sci U S A 106:21377–21382.CrossRefGoogle ScholarPubMed
Dziedzicka-Wasylewska, M, Faron-Górecka, A, Andrecka, J, Polit, A, Kuśmider, M, Wasylewski, Z. (2006) Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane. Biochemistry 45: 8751–8759.CrossRefGoogle ScholarPubMed
Rashid, AJ, So, CH, Kong, MM, Furtak, T, El-Ghundi, M, Cheng, R, O'Dowd, BF, and George, SR (2007a). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104:654–659.CrossRefGoogle ScholarPubMed
Moine, C and Bloch, B (1995). D1 and D2 dopamine receptor gene expression in rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426.CrossRefGoogle ScholarPubMed
Lee, K-W, Kim, Y, Kim, AM, Helmin, K, Nairn, AC, and Greengard, P (2006). Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. PNAS 103:3399–3404.CrossRefGoogle ScholarPubMed
Gong, S, Zheng, C, Doughty, ML, Losos, K, Didkovsky, N, Schambra, UB, Nowak, NJ, Joyner, A, Leblanc, G, Hatten, ME, and Heintz, N (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925.CrossRefGoogle ScholarPubMed
Mahan, LC, Burch, RM, Monsma, FJ, and Sibley, DR (1990). Expression of striatal D1 dopamine receptors coupled to inositol phosphate production and Ca2+ mobilization in Xenopus oocytes. Proc Natl Acad Sci USA 87:2196–2200.CrossRefGoogle Scholar
Shetreat, ME, Lin, L, Wong, AC, and Rayport, S (1996). Visualization of D1 dopamine receptors on living nucleus accumbens neurons and their colocalization with D2 receptors. J Neurochem 66:1475–1482.CrossRefGoogle ScholarPubMed
Bertran-Gonzalez, J, Bosch, C, Maroteaux, M, Matamales, M, Hervé, D, et al. (2008). Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685.CrossRefGoogle ScholarPubMed
Smart, TG (1997). Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr Opin Neurobiol 7:358–367.CrossRefGoogle ScholarPubMed
Levey, AI, Hersch, SM, Rye, DB, Sunahara, RK, Niznik, HB, et al. (1993). Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Nat Acad Sci USA 90:8861–8865.CrossRefGoogle ScholarPubMed
Hersch, SM, Ciliax, BJ, Gutekunst, CA, Rees, HD, Heilman, CJ, Yung, KK, et al. (1995). Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15:5222–5237.CrossRefGoogle ScholarPubMed
Deng, YP, Lei, WL, and Reiner, A (2006). Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 32:101–116.CrossRefGoogle ScholarPubMed
Svenningsson, P, Fredholm, BB, Bloch, B, and Moine, C (2000). Co-stimulation of D(1)/D(5) and D(2) dopamine receptors leads to an increase in c-fos messenger RNA in cholinergic interneurons and a redistribution of c-fos messenger RNA in striatal projection neurons. Neuroscience 98:749–757.CrossRefGoogle Scholar
Ng, J, Rashid, AJ, So, CH, O'Dowd, BF, George, SR. (2010). Activation of calcium/calmodulin-dependent protein kinase IIalpha in the striatum by the heteromeric D1-D2 dopamine receptor complex. Neuroscience 165: 535–541.CrossRefGoogle ScholarPubMed
Zhou, F-M, Wilson, CJ, and. Dani, JA (2002). Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590–605.CrossRefGoogle ScholarPubMed
Berridge, MJ (1998). Neuronal calcium signaling. Neuron 21:13–26.CrossRefGoogle ScholarPubMed
Blaeser, F, Sanders, MJ, Truong, N, Ko S, Wu LJ, Wozniak, DF, Fanselow, MS, Zhuo, M, and Chatila, TA (2006). Long-term memory deficits in Pavlovian fear conditioning in Ca2+/calmodulin kinase kinase alpha-deficient mice. Mol Cell Biol 26:9105–9115.CrossRefGoogle ScholarPubMed
Choi SS, Seo YJ, Shim, EJ, Kwon, MS, Lee, JY, Ham, YO, and Suh, HW (2006). Involvement of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse formalin pain model. Brain Res 1108:28–38.CrossRefGoogle ScholarPubMed
Wong, AC, Shetreat, ME, Clarke, JO, and Rayport, S (1999). D1- and D2-like dopamine receptors are colocalized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. Neuroscience 89:221–233.CrossRefGoogle Scholar
Milligan, G and White, JH (2001). Protein-protein interactions at G-protein-coupled receptors. Trends Pharmacol Sci 22:513–518.CrossRefGoogle Scholar
Lidow, MS (2003). Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Rev 43:70–84.CrossRefGoogle ScholarPubMed
Liu, XY, Mao, LM, Zhang, GC, Papasian, CJ, Fibuch, EE, Lan, HX, Zhou, HF, Xu M, Wang JQ (2009). Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61:425–438.CrossRefGoogle ScholarPubMed
Borodinsky, LN, Coso, OA, and Fiszman, ML (2002). Contribution of Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase to neural activity-induced neurite outgrowth and survival of cerebellar granule cells. J Neurochem 80:1062–1070.CrossRefGoogle ScholarPubMed
Salim, H, Ferre, S, Dalal, A, Peterfreund, RA, Fuxe, K, Vincent, JD, and Lledo, PM (2000). Activation of adenosine A1 and A2A receptors modulates dopamine D2 receptor induced responses in stably transfected human neuroblastoma cells. J Neurochem 74:432–439.CrossRefGoogle ScholarPubMed
Yao, W-D, Spealman, RD, and Zhang, J (2008). Dopaminergic signaling in dendritic spines. Biochem pharmacol 75 (11): 2055–2069.CrossRefGoogle ScholarPubMed
Agnati, LF, Benfenati, F, Solfrini, V, Biagini, G, Fuxe, K, Guidolin, D, Carani, C, and Zini, I (1993). Intramembrane receptor/receptor interactions: integration of signal transduction pathways in the nervous system. Neurochem Int 22:213–222.CrossRefGoogle Scholar
Gouldson, PR, Snell, CR, Bywater, RP, Higgs, C, and Reynolds, CA (1998). Domain swapping in G-protein coupled receptor dimers. Protein Eng 11:1181–1193.CrossRefGoogle Scholar
Guo, W, Shi, L, Filizola, M, Weinstein, H, and Javitch, JA (2005). From the cover: crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA 102:17495–17500.CrossRefGoogle Scholar
Lee, SP, O'Dowd, BF, Rajaram RD, Nguyen T, and George SR (2003). D2 Dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry 42:11023–11031.CrossRef
Liu, XY, Chu, XP, Mao, LM, Wang, M, Lan, HX, Li, MH, et al. (2006). Modulation of D2R–NR2B interactions in response to cocaine. Neuron 52:897–909.CrossRefGoogle ScholarPubMed
Lobo, MK, Karsten, SL, Gray, M, Geschwind, DH, and Yang, XW (2006). FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci 9:443–452.CrossRefGoogle ScholarPubMed
Ng, GY, Mouillac, B, George, SR, Caron, M, Dennis, M, Bouvier, M, and O'Dowd, BF (1994b). Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur J Pharmacol 267: 7–19CrossRefGoogle ScholarPubMed
Ng, GY, O'Dowd, BF, Caron, M, Dennis, M, Brann, MR, and George, SR (1994a). Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J Neurochem 63:1589–1595.CrossRefGoogle ScholarPubMed
Shen, W, Tian, X, Day, M, Ulrich, S, Tkatch, T, Nathanson, NM, Surmeier, DJ (2007). Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10:1458–1466.CrossRefGoogle ScholarPubMed
Wu, GY and Cline, HT (1998). Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222–226.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×