Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T22:42:54.072Z Has data issue: false hasContentIssue false

16 - Applied diatom studies in estuaries and shallow coastal environments

from Part IV - Diatoms as indicators in marine and estuarine environments

Published online by Cambridge University Press:  05 June 2012

Rosa Trobajo
Affiliation:
IRTA-Aquatic Ecosystems
Michael J. Sullivan
Affiliation:
St. Andrews's North Campus
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Diatoms are an important and often dominant component of benthic microalgal assemblages in estuarine and shallow coastal environments. This chapter will be concerned mainly with motile diatom assemblages on sediments in these environments and secondarily with epiphytic diatom assemblages on submerged aquatic vegetation. Admiraal (1984) provided an excellent summary of the ecology of estuarine sediment-inhabiting diatoms and Underwood and Kromkamp (1999) an excellent review of microphytobenthos primary production in estuaries.

Many topics were covered in the above two works, including the distribution, effects of physicochemical factors, population growth, primary production, and interactions with herbivores in Admiraal's work, and a summary of the main factors affecting production and biomass of microphytobenthos (diatom-dominated) within microtidal temperate estuaries in Underwood and Kromkamp's review. The focus of the present review will be considerably narrower because only those applied studies that have focused on the autecology of particular diatom species or that have utilized structural (e.g. species diversity) and/or functional (e.g. primary production rates) attributes of benthic diatom assemblages will be considered. By “applied” we mean studies that treat benthic diatom assemblages as tools to address concerns about larger ecosystem problems such as cultural eutrophication of estuarine and shallow coastal environments. The three diatom-related research topics that will be reviewed in this chapter include eutrophication and sediment toxicity, sediment stability, and contribution of benthic diatom assemblages to global primary production and their role in food webs.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 309 - 323
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. P., Bate, G. C., Harrison, T. D., et al. (2002). A method to assess the freshwater inflow requirements of estuaries and applications to the Mtata Estuary, South Africa. Estuaries, 25, 1382–93.CrossRefGoogle Scholar
Adams, M. A. & Stauber, J. L. (2004). Development of a whole-sediment toxicity test using a benthic marine microalga. Environmental Toxicology and Chemistry, 23, 1957–68.CrossRefGoogle ScholarPubMed
Admiraal, W. (1977a). Influence of various concentrations of orthophosphate on the division rate of an estuarine benthic diatom, Navicula arenaria. Marine Biology, 42, 1–8.CrossRefGoogle Scholar
Admiraal, W. (1977b). Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Marine Biology, 43, 307–15.CrossRefGoogle Scholar
Admiraal, W. (1984). The ecology of estuarine sediment-inhabiting diatoms. Progress in Phycological Research, 3, 269–322.Google Scholar
Admiraal, W. & Peletier, H. (1979a). Sulphide tolerance of benthic diatoms in relation to their distribution in an estuary. British Phycological Journal, 14, 185–96.CrossRefGoogle Scholar
Admiraal, W. & Peletier, H. (1979b). Influence of organic compounds and light limitation on the growth rate of estuarine benthic diatoms. British Phycological Journal, 14, 197–206.CrossRefGoogle Scholar
Admiraal, W. & Peletier, H. (1980). Distribution of diatom species on an estuarine mud flat and experimental analysis of the selective effect of stress. Journal of Experimental Marine Biology and Ecology, 46, 157–75.CrossRefGoogle Scholar
Baillie, P. W. & Welsh, B. L. (1980). The effect of tidal resuspension on the distribution of intertidal epipelic algae in an estuary. Estuarine and Coastal Marine Science, 10, 165--80.CrossRef
Bąk, M., Wawrzyniak-Wydrowska, , , B., & Witkowski, , , A. (2001). Odra River discharge as a factor affecting species composition of the Szczecin Lagoon diatom flora, Poland. In Studies on Diatoms. Lange-Bertalot-Festischrift, ed. Jahn, R., Kociolek, J. P., Witkowski, A., & Compere, P., Ruggell: Gantner Verlag, pp. 491–506.Google Scholar
Brummit, , , R. K. & Powell, , , C. E. (1992). Authors of Plant Names. Kew: Royal Botanic Gardens.Google Scholar
Cahoon, L. B., Beretich, G. R. Jr., Thomas, C. J., & McDonald, , , A. M. (1993). Benthic microalgal production at Stellwagen Bank, Massachusetts Bay, USA. Marine Ecology Progress Series, 102, 179–85.CrossRefGoogle Scholar
Cahoon, , , L. B. & Cooke, , , J. E. (1992). Benthic microalgal production in Onslow Bay, North Carolina, USA. Marine Ecology Progress Series, 84, 185–96.CrossRefGoogle Scholar
Cahoon, , , L. B. & Laws, , , R. A. (1993). Benthic diatoms from the North Carolina continental shelf: inner and mid shelf. Journal of Phycology, 29, 257–63.CrossRefGoogle Scholar
Cahoon, , , L. B., Laws, , , R. A., & Thomas, , , C. J. (1994). Viable diatoms and chlorophyll a in continental slope sediments off Cape Hatteras, North Carolina. Deep-Sea Research II, 41, 767–82.CrossRefGoogle Scholar
Cahoon, , , L. B., Redman, , , R. S., & Tronzo, , , C. R. (1990). Benthic microalgal biomass in sediments of Onslow Bay, North Carolina. Estuarine, Coastal and Shelf Science, 31, 805–16.CrossRefGoogle Scholar
Coleman, , , V. L. & Burkholder, , , J. M. (1994). Community structure and productivity of epiphytic microalgae on eelgrass (Zostera marina L.) under water-column nitrate enrichment. Journal of Experimental Marine Biology and Ecology, 179, 29–48.CrossRefGoogle Scholar
Coleman, , , V. L. & Burkholder, , , J. M. (1995). Response of microalgal epiphyte communities to nitrate enrichment in an eelgrass (Zostera marina) meadow. Journal of Phycology, 31, 36–43.CrossRefGoogle Scholar
Coles, , , S. M. (1979). Benthic microalgal populations on intertidal sediments and their role as precursors to salt marsh development. In Ecological Processes in Coastal Environments, ed. Jefferies, R. L. & Davy, A. J., Oxford: Blackwell, pp. 25–42.Google Scholar
Consalvey, , , M., Paterson, , , D. M., & Underwood, , , G. J. C. (2004). The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Research, 19, 181–202.CrossRefGoogle Scholar
Costanza, , , R., Norton, , , B. G., & Haskell, , , B. D. (1992). Ecosystem Health: New Goals for Environmental Management. Washington, DC: Island Press.Google Scholar
Darley, , , W. M., Montague, , , C. L., Plumley, , , F. G., Sage, , , W. W., & Psalidas, , , A. T. (1981). Factors limiting edaphic algal biomass and productivity in a Georgia salt marsh. Journal of Phycology, 17, 122–8.CrossRefGoogle Scholar
Dauvin, , , J.-C. (2007). Paradox of estuarine quality: benthic indicators and indices, consensus or debate for the future. Marine Pollution Bulletin, 55, 271–81.CrossRefGoogle ScholarPubMed
Decho, , , A. W. (2000). Microbial biofilms in intertidal systems: an overview. Continental Shelf Research, 20, 1257–74.CrossRefGoogle Scholar
Dudley, , , B. J., Gahnström, , , A. M. E., & Walker, , , D. I (2001). The role of benthic vegetation as a sink for elevated inputs of ammonium and nitrate in a mesotrophic estuary. Marine Ecology Progress Series, 219, 99–107.CrossRefGoogle Scholar
Elliott, , , M. & Quintino, , , V. (2007). The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin, 54, 640–5.CrossRefGoogle ScholarPubMed
Forster, R. M., Creach, , , V., Sabbe, , , K., Vyverman, , , W., & Stal, , , L. J. (2006). Biodiversity-ecosystem function relationship in microphytobenthic diatoms of the Westerschelde Estuary. Marine Ecology Progress Series, 311, 192–201.CrossRefGoogle Scholar
Galván, , , K., Fleeger, , , J. W., & Fry, , , B. (2008). Stable isotope addition reveals dietary importance of phytoplankton and microphytobenthos to saltmarsh infauna. Marine Ecology Progress Series, 359, 37–49.CrossRefGoogle Scholar
Glud, , , R. N., Kühl, , , M., Wenzhöfer, , , F., & Rysgaard, , , S. (2002). Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production in European intertidal mudflats – a modelling approach. Continental Shelf Research, 20, 1771–88.Google Scholar
Grant, , , J., Bathmann, , , U. V., & Mills, , , E. L. (1986). The interaction between benthic diatom films and sediment transport. Estuarine, Coastal and Shelf Science, 23, 225–38.CrossRefGoogle Scholar
Hall, , , N. E., Fairchild, , , J. F., Point, , , T. W.et al. (1996). Problems and recommendations in using algal toxicity testing to evaluate contaminated sediments. Journal of Great Lakes Research, 22, 545–56.CrossRefGoogle Scholar
Hamels, , , I., Mussche, , , H., Sabbe, , , K., Muylaert, , , K., & Vyverman, , , W. (2004). Evidence for constant and highly specific active food selection by benthic cialiates in mixed diatoms assemblages. Limnology and Oceanography, 49, 58–68.CrossRefGoogle Scholar
Hanlon, , , A. R. M., Bellinger, , , B., Haynes, , , K., et al. (2006). Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersion-immersion period. Limnology and Oceanography, 5, 79–93.CrossRefGoogle Scholar
Heap, , , A., Bryce, , , S., Ryan, , , D., et al. (2001). Australian estuaries & coastal waterways: a geoscience perspective for improved and integrated resource management. A report to the National Land & Water Resources Audit. Theme 7: Ecosystem Health. Australian Geological Survey Organisation, Record 2001/07.
Hendey, , , N. I. (1977). The species diversity index of some in-shore diatom communities and its use in assessing the degree of pollution insult on parts of the north coast of Cornwall. Nova Hedwigia, Beiheft, 54, 355–78.Google Scholar
Herman, , , P. M. J., Middelburg, , , J. J., Widdows, , , J., Lucas, , , C. H., & Heip, , , C. H. R. (2000). Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Marine Ecology Progress Series, 204, 79–92.CrossRefGoogle Scholar
Holland, , , A. F., Zingmark, , , R. G., & Dean, , , J. M. (1974). Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. Marine Biology, 27, 191–6.CrossRefGoogle Scholar
Howarth, , , R. W. & Marino, , , R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography, 51, 364–76.CrossRefGoogle Scholar
,IPCC (Intergovernmental Panel on Climate Change) (2007). Impacts, Adaptation and Vulnerability. IPCC Secretariat: Geneva.Google Scholar
Jonge, , , V. N. & Beusekom, , , J. E. E. (1992). Contribution of resuspended microphytobenthos to total phytoplankton in the Ems estuary and its possible role for grazers. Netherlands Journal of Sea Research, 30, 91–105.CrossRefGoogle Scholar
Jonge, , , V. N. & Beusekom, , , J. E. E. (1995). Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnology and Oceanography, 40, 766–78.Google Scholar
Kelly, , , M., Jones, , , R. I., Barker, , , P. A., & Jamieson, , , B. J. (2008a). Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia, 610, 125–9.CrossRefGoogle Scholar
Kelly, , , M., Juggins, , , R., Guthrie, , , R., et al. (2008b). Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology, 53, 403–22.Google Scholar
Kolkwitz, , , R. & Marsson, , , M. (1908). Ökologie der pflanzliche Saprobien. Berichte der Deutschen Botanischen Gesellschaft, 26, 505–19.Google Scholar
Laird, , , K. & Edgar, , , R. K. (1992). Spatial distribution of diatoms in the surficial sediments of a New England salt marsh. Diatom Research, 7, 267–79.CrossRefGoogle Scholar
Lange-Bertalot, , , H. (1978). Diatomeen-Differentialarten anstelle von Leitformen: ein geeigneteres Kriterium der Gewässerbelastung. Archiv für Hydrobiologie, Supplement 51, Algological Studies, 21, 393–427.Google Scholar
Lange-Bertalot, , , H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, Beiheft, 64, 285–304.Google Scholar
Leira, , , M., Jordan, , , P., Taylor, , , D., et al. (2006). Assessing the ecological status of candidate reference lakes in Ireland using palaeolimnology. Journal of Applied Ecology, 43, 816–27.CrossRefGoogle Scholar
Lloyd, , , M., Zar, , , J. H., & Karr, , , J. R. (1968). On the calculation of information-theoretical measures of diversity. The American Midland Naturalist, 79, 257–72.CrossRefGoogle Scholar
Longphuirt, , , S. N., Leynaert, , , A., Guarini, , , J-M., et al. (2006). Discovery of microphytobenthos migration in the subtidal zone. Marine Ecology Progress Series, 328, 143–54.CrossRefGoogle Scholar
MacIntyre, , , H. L., Geider, , , R. J., & Miller, , , D. C. (1996). Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries, 19, 186–201.CrossRefGoogle Scholar
McGee, , , D., Laws, , , R. A., & Cahoon, , , L. B. (2008). Live benthic diatoms from the upper continental slope: extending the limits of marine primary production. Marine Ecology Progress Sereies, 356, 103–12.CrossRefGoogle Scholar
Middelburg, , , J. J., Barranguet, , , C., Boschker, , , H. T. S., et al. (2000). The fate of intertidal microphytobenthos carbon: an in situ13C-labelling study. Limnology and Oceanography, 45, 1224–34.CrossRefGoogle Scholar
Miles, , , A. & Sundbäck, , , K. (2000). Diel variation in microphytobenthic productivity in areas of different tidal amplitude. Marine Ecology Progress Series, 205, 11–22.CrossRefGoogle Scholar
Miller, , , D. C., Geider, , , R. J., & MacIntyre, , , H. L. (1996). Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries, 19, 202–12.CrossRefGoogle Scholar
Moran, M. A., Sheldon, W. M. Jr., & Zepp, R. G. (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography, 45, 1254–64.CrossRefGoogle Scholar
Moreno-Garrido, , , I., Hampel, , , M., Lubián, , , L. M., & Blasco, , , J. (2003). Sediment toxicity tests using benthic marine microalgae Cylindrotheca closterium (Ehremberg) Lewin and Reimann (Bacillariophyceae). Ecotoxicology and Environmental Safety, 54, 290–5.CrossRefGoogle Scholar
Moreno-Garrido, , , I., Lubián, , , L. M., Jiménez, , , B., Soares, , , A. M. V. M., & Blasco, , , J. (2007). Estuarine sediment toxicity tests on diatoms: Sensitivity comparison for the three species. Estuarine, Coastal and Shelf Sciences, 71, 278–86.CrossRefGoogle Scholar
,National Academy of Sciences (Committee on the Causes and Management of Coastal Eutrophication, Ocean Studies Board and Water Science and Technology Board, Commission on Geosciences, Environment, and Resources, National Research Council.) (2000). Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution, Washington, DC: National Academy Press.
Orvain, A. M., Galois, C., Barnar, A., et al. (2003). Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in tidal mesocosm. Microbial Ecology, 45, 237–51.CrossRefGoogle ScholarPubMed
Page, , , H. M. & Lastra, , , M. (2003). Diet of intertidal bivalves in the Ría de Arosa (NW Spain): evidence from stable C and N isotope analysis. Marine Biology, 143, 519–32.CrossRefGoogle Scholar
Paterson, , , D. M. (1986). The migratory behaviour of diatom assemblages in a laboratory tidal micro-ecosystem examined by low temperature scanning electron microscopy. Diatom Research, 1, 227–39.CrossRefGoogle Scholar
Paterson, , , D. M. (1990). The influence of epipelic diatoms on the erodibility of an artificial sediment. In Proceedings of the 10th International Diatom Symposium, ed. Simola, H., Königstein: Koeltz Scientific Books, pp. 345–55.Google Scholar
Peletier, , , H. (1996). Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Marine Ecology Progress Studies, 137, 265–71.CrossRefGoogle Scholar
Perkins, , , R. G., Underwood, , , G. J. C., Brotas, , , V., et al. (2001). Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Marine Ecology Progress Series, 223, 101–12.CrossRefGoogle Scholar
Round, , , F. E. (1979). Botanical aspects of estuaries. In Tidal Power and Estuary Management, ed. Severn, R. T., Dineley, D., & Hawker, L. E., Bristol: Scientechnica, pp. 195–213.Google Scholar
Round, , , F. E. (1981). The Ecology of Algae, Cambridge: Cambridge University Press.Google Scholar
Saburova, , , M. A. & Polikarpov, , , I. G. (2003). Diatom activity within soft sediments: behavioural and physiological processes. Marine Ecology Progress Series, 251, 115–26.CrossRefGoogle Scholar
Shaffer, , , G. P. & Sullivan, , , M. J. (1988). Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. Journal of Phycology, 24, 132–40.CrossRefGoogle Scholar
Short, , , F. T. & Wyllie-Echeverria, , , S. (1996). Natural and human-induced disturbance of seagrasses. Environmental Conservation, 23, 17–27.CrossRefGoogle Scholar
Smith, , , D. J. & Underwood, , , G. J. C. (2000). The production of extracellular carbohydrate exopolymers (EPS) by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. Journal of Phycology, 36, 321–33.CrossRefGoogle Scholar
Staats, , , N., Winder, , , B., Stal, , , L. J., & Mur, , , L. R. (1999). Isolation and characterisation of extracellular plysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. European Journal of Phycology, 34, 161–9.CrossRefGoogle Scholar
Staats, , , N., Stal, , , L. J., Winder, , , B., & Mur, , , L. R. (2000a). Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Marine Ecology Progress Series, 193, 261–9.CrossRefGoogle Scholar
Staats, , , N., Stal, , , L. J., & Mur, , , L. J. (2000b). Exopolysacharide production by epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. Journal of Experimental Marine Biology, 249, 3–27.CrossRefGoogle Scholar
Stal, , , L. J. (2003). Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiology Journal, 20, 463–78.CrossRefGoogle Scholar
Sullivan, , , M. J. (1976). Long-term effects of manipulating light intensity and nutrient enrichment on the structure of a salt marsh diatom community. Journal of Phycology, 12, 205–10.Google Scholar
Sullivan, , , M. J. (1978). Diatom community structure: taxonomic and statistical analysis of a Mississippi salt marsh. Journal of Phycology, 14, 468–75.CrossRefGoogle Scholar
Sullivan, , , M. J. (1986). Mathematical expression of diatom results: are these “pollution indices” valid and useful? In Proceedings of the 8th International Diatom Symposium, ed. Ricard, M., Königstein: KoeltzScientific Books, pp. 772–6.Google Scholar
Sullivan, , , M. J. & Currin, , , C. A. (2000). Community structure and functional dynamics of benthic microalgae in salt marshes. In Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. & Kreeger, D. A., Dordrecht, Kluwer Academic Publishers, pp. 81–106.Google Scholar
Sullivan, , , M. J. & Daiber, , , F. C. (1975). Light, nitrogen, and phosphorus limitation of edaphic algae in a Delaware salt marsh. Journal of Experimental Marine Biology and Ecology, 18, 79–88.CrossRefGoogle Scholar
Sundbäck, , , K. & Granéli, , , W. (1988). Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study. Marine Ecology Progress Series, 43, 63–9.CrossRefGoogle Scholar
Sundbäck, , , K., Enoksson, , , V., Granéli, , , W., & Pettersson, , , K. (1991a). Influence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water: a laboratory continuous-flow study. Marine Ecology Progress Series, 74, 263–79.CrossRefGoogle Scholar
Sundbäck, , , K. & Snoeijs, , , P. (1991b). Effects of nutrient enrichment on microalgal community composition in a shallow-water sediment system: an experimental study. Botanica Marina, 34, 341–58.CrossRefGoogle Scholar
Tolhurst, , , T., Black, , , K. S., Shayler, , , S. A., et al. (1999). Measuring in situ erosion shear stress of intertidal sediments with the cohesive strength meter (CSM). Estuarine, Coastal and Shelf Science, 49, 281–94.CrossRefGoogle Scholar
Tomàs, , , X. (1988). Diatomeas de las aguas epicontinentales saladas del litoral mediterráneo de la Península Ibérica. Ph.D. thesis, University of Barcelona, Spain.Google Scholar
Trobajo, , , R. (2007). Ecological Analysis of Periphytic Diatoms in Mediterranean Coastal Wetlands (Empordà Wetlands, NE Spain), ed. Witkowski, A., Diatom Monographs, vol. 7, Ruggel: A. R. G. Gantner Verlag.Google Scholar
Trobajo, , , R., Quintana, , , X. D., & Sabater, , , S. (2004). Factors affecting the periphytic diatom community in Mediterranean coastal wetlands (Empordà wetlands, NE Spain). Archiv f ür Hydrobiologie, 160, 373–99.Google Scholar
Underwood, , , G. J. C. (1997). Microalgal colonisation in a saltmarsh restoration scheme. Estuarine, Coastal and Shelf Science, 44, 471–81.CrossRefGoogle Scholar
Underwood, , , G. J. C. (2000). Changes in microalgal species composition, biostabilisation potential and succession during saltmarsh restoration. In British Salt Marshes, ed. Sherwood, B. R., Gardiner, B. G., & Harris, T., Cardigan: Linnaean Society of London/ Forrest Text, pp. 143–54.Google Scholar
Underwood, , Barnett, G. J., , M. (2006). What determines species composition in microphytobenthic biofilms? In Proceedings of the Microphytobenthos Symposium, ed. Kromkamp, J., Amsterdam: Royal Netherlands Academy of Arts and Sciences, pp. 121–38.Google Scholar
Underwood, , , G. J. C., Boulcott, , , M., Raines, , , C. A., & Waldran, , , K. (2004). Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition and pathways of production. Journal of Phycology, 40, 293–304.CrossRefGoogle Scholar
Underwood, , , G. J. C. & Kromkamp, , , J. (1999). Primary production by phytoplankton and microphytobenthos in estuaries. In Advances in Ecological Research, Estuaries, Vol. 29, ed. Nedwell, D. B. & Raffaelli, D. G., San Diego: Academic Press, pp. 94–153.Google Scholar
Underwood, , , G. J. C. & Paterson, , , D. M. (1993a). Recovery of intertidal benthic diatoms after biocide treatment and associated sediment dynamics. Journal of the Marine Biological Association of the United Kingdom, 73, 25–45.CrossRefGoogle Scholar
Underwood, , , G. J. C. & Paterson, , , D. M. (1993b). Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn Estuary. Journal of the Marine Biological Association of the United Kingdom, 73, 871–87.CrossRefGoogle Scholar
Underwood, , , G. J. C. & Paterson, , , D. M. (2003). The importance of extracellular carbohydrate production by marine epipelic diatoms. Advances in Botanical Research, 40, 183–240.CrossRef
Underwood, , , G. J. C., Perkins, , , R. G., Consalvey, , , M., et al. (2005). Patterns in microphytobenthic primary productivity: species-specific variation in migratory rhythms and photosynthetic efficiency in mixed species. Limnology and Oceanography, 50, 755–67.CrossRefGoogle Scholar
Underwood, , , G. J. C., Phillips, , , J., & Saunders, , , K. (1998). Distribution of estuarine benthic diatom species along salinity and nutrient gradients. European Journal of Phycology, 33, 173–83.CrossRefGoogle Scholar
Underwood, , , G. J. C. & Provot, , , L. (2000). Determining the environmental preferences of four estuarine epipelic diatom taxa: growth across a range of salinity, nitrate and ammonium conditions. European Journal of Phycology, 35, 173–82.CrossRefGoogle Scholar
Underwood, , Smith, G. C., , J. (1998). In situ measurement of exopolymer production by intertidal epipelic diatom-dominated biofilms in the Humber Estuary. Geological Society of London, Special Publication, 139,125–34.CrossRefGoogle Scholar
,USEPA (United States Environmental Protection Agency) (2002). Federal Water Pollution Control Act (as amended through P.L. 107–303, November 27, 2002). See http://www.saj.usace.army.mil/Divisions/Regulatory/DOCS/wetlands/fwpca_2005.pdf.
Valiela, , , I., Collins, , , G., Kremer, , , J., et al. (1997). Nitrogen loading from coastal watersheds to receiving estuaries: new method and application. Ecological Applications, 7, 358–80.CrossRefGoogle Scholar
Dam, , , H. (1982). On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia, Beiheft, 73, 97–115.Google Scholar
Raalte, Valiela, I., & Teal, J. M. (1976a). The effect of fertilization on the species composition of salt marsh diatoms. Water Research, 10, 1–4.CrossRefGoogle Scholar
Raalte, Valiela, I., & Teal, , , J. M. (1976b). Production of epibenthic salt marsh algae: light and nutrient limitation. Limnology and Oceanography, 21, 862–72.Google Scholar
Varela, , , M. & Penas, , , E. (1985). Primary production of benthic microalgae in an intertidal sand flat of the Ría de Arosa, NW Spain. Marine Ecology Progress Series, 25, 111–9.CrossRefGoogle Scholar
Vos, , , P. C., Boer, P. L., & Misdorp, , , R. (1988). Sediment stabilization by benthic diatoms in intertidal sandy shoals: qualitative and quantitative observations. In Tide-Influenced Sedimentary Environments and Facies, ed. Boer, P. L., Gelder, A., & Nio, S. D., Dordrecht: Reidel, pp. 511–26.CrossRefGoogle Scholar
Watt, , , D. A. (1998). Estuaries of contrasting trophic status in KwaZulu-Natal, South Africa. Estuarine, Coastal and Shelf Science, 47, 209–16.CrossRefGoogle Scholar
Wear, , , D. J., Sullivan, , , M. J., Moore, , , A. D., & Millie, , , D. F. (1999). Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Marine Ecology Progress Series, 179, 201–13.CrossRefGoogle Scholar
,WFD European Union (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L327 (43), 1–72.Google Scholar
Widdows, , , J., Blaw, , , A., Heip, , , C. H. R., et al. (2004). Role of physical and biological processes in sediment dynamics of a tidal flat in Werschelde Estuary, SW Netherlands. Marine Ecology Progress Series, 274, 41–56.CrossRefGoogle Scholar
Widdows, , , J., Brown, , , S., Brinsley, , , M. D., Salkeld, , , P. N., & Elliott, , , M. (2000). Temporal changes in intertidial sediment erodability: influence of biological and climate factors. Continental Shelf Research, 20, 1275–89.CrossRefGoogle Scholar
Winning, , , M. A., Connolly, , , R. M., Loneragan, , , N. R. & Bunn, , , S. E. (1999). 15N enrichment as a method of separating the isotopic signatures of seagrass and its epiphytes for food web analysis. Marine Ecology Progress Series, 189, 289–94.CrossRefGoogle Scholar
Wulff, , , A., Wängberg, , , S.-Å., Sunbäch, , , K., Nilsson, , , C., & Underwood, , , G. J. C. (2000). Effects of UVB radiation on a marine microbenthic community growing on a sand-substratum under different nutrient conditions. Limnology and Oceanography, 45, 1144–52.CrossRefGoogle Scholar
Yallop, , , M. L., Winder, , , B., Paterson, , , D. M., & Stal, , , L. J. (1994). Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuarine, Coastal and Shelf Science, 39, 565–82.CrossRefGoogle Scholar
Zaldívar, , , J-M., Cardoso, , , A. C., Viaroli, , , P., et al. (2008). Eutrophication in transitional waters: an overview. Transitional Waters Monographs, 1, 1–78. See http://siba2.unile.it/ese/twm.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×