Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-14T02:26:38.696Z Has data issue: false hasContentIssue false

8 - High-power handling

Published online by Cambridge University Press:  05 February 2014

Fabio Coccetti
Affiliation:
Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS)
Robert Plana
Affiliation:
Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS)
Stepan Lucyszyn
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

RF MEMS are key enabling components within a number of applications where the level of RF power can reach significant values (e.g. above 1 W). Examples include reconfigurable matching networks, for optimised power-added efficiency (PAE) amplifiers; tuneable or switchable filters; and reconfigurable routing networks that can include switching matrices. Contrary to non-RF MEMS technologies that have already reached industrial maturity (e.g. pressure sensors accelerometers, etc.), the operational principle of RF MEMS devices is, in general, based on physical contact (be it ohmic or capacitive), between constitutive mechanical parts, and are characterised by the coexistence of biasing and RF signals. Exceptions to this include variable inductors and RF-coupled cantilever inverted-microstrip filters. This is unique to RF MEMS and becomes of increasing importance as the RF power level increases. The RF power transfer through the device strongly depends on the quality of the physical contacts, with the associated RF voltages and RF currents affecting the electromechanical action – by yielding unwanted phenomena (e.g. self-actuation, stiction and contact wearing). Moreover, other and more conventional related effects (e.g. self-heating and electromigration), as shown in Fig. 8.1, must be considered. With device sizes of approximately a few square millimetres and made of suspended movable metal and/or dielectric parts, it becomes evident that RF power-handling optimisation must be based on a comprehensive modelling approach, covering the underlying coupled thermo-electromechanical phenomena, and be driven by innovative design and technological approaches. Because of this complex scenario, the topic of RF power handling has become the subject of great interest in the research community and one of the top priorities for industrial applications. In this chapter, the state-of-the-art will be surveyed from the perspectives of the fundamental related phenomena, such as electromigration, self-heating and self-actuation. Throughout, the focus will be on capacitive switches, varactors and metal contact switches.

Type
Chapter
Information
Advanced RF MEMS , pp. 205 - 231
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hau-Riege, Ch. S., “An introduction to Cu electromigration”, Microelectron. Reliab., vol. 44, pp. 195–205, 2004CrossRefGoogle Scholar
Black, J. R., “Electromigration failure models in aluminum metallization for semiconductor devices,” Proc. IEEE, vol. 57, no. 9, pp. 1587–94, 1969CrossRefGoogle Scholar
Scorzoni, A., Caprile, C. and Fantini, F., “Electromigration in thin-film interconnection lines: models, methods and results,” Material Science Reports, New York: Elsevier, vol. 7, pp. 143–219, 1991CrossRefGoogle Scholar
Maiz, J. A., “Characterization of electromigration under bidirectional (BC) and pulsed unidirectional (PDC) currents”, Proceedings of the International Reliability Physics Conference (IRPS), pp. 220–8, 1989
Blair, J. C., Fuller, C. R., Ghate, P. B. and Haywood, C. T., “Electromigration-induced failures in, and microstructure and resistivity of, sputtered gold films”, J. Appl. Phys., vol. 43, no. 2, pp. 307–11, 1972CrossRefGoogle Scholar
Ducarouge, B., Perret, E., Flourens, F., Melle, S., Ongareau, E., Grenier, K., Boukabache, A., Conedera, V., Pons, P., Perret, E., Aubert, H. and Plana, R., “Power capabilities of RF MEMS”, Proceedings of the 24th International Conference on Microelectronics (MIEL 2004), vol. 1, pp. 65–70, 2004Google Scholar
Ducarouge, B., “Conception et Caracterisation de Micro-commutateurs Electromechaniques Hyperfrequences de Puissance: Application a un circuit de commutation d’Emission/Reception Large Bande”, PhD Dissertation, Laboratoire d’Analyse et d’Architecture des Systemes du CNRS, 2003
Jerke, G. and Lienig, J., “Hierarchical current-density verification in arbitrarily shaped metallization patterns of analog circuits”, IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 23, no. 1, pp. 80–90, 2004CrossRefGoogle Scholar
Rizk, J. B., Chaiban, E. and Rebeiz, G. M., “Steady state thermal analysis and high-power reliability considerations of RF MEMS capacitive switches”, IEEE MTT-S Symposium Digest, pp. 239–42, Jun. 2002
Chow, L. L. W., Wang, Z., Jensen, B. D., Saitou, K., Volakis, J. L. and Kurabayashi, K., “Skin-effect self-heating in air-suspended RF MEMS transmission-line structures”, J. Microelectromech. Syst., vol. 15, no. 6, pp. 1622–31, Dec. 2006CrossRefGoogle Scholar
Reid, J., Starman, L. and Webster, R. T., “RF Actuation of capacitive MEMS switches”, IEEE MTT-S Symp. Digest, pp. 1919–22, 2003Google Scholar
Rebeiz, G. M., RF MEMS Theory, Design, and Technology, New York: Wiley, 2003.Google Scholar
Peroulis, D., Pacheco, S. P. and Katehi, L. P. B., “RF MEMS switches with enhanced power handling capabilities”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 59–68, Jan. 2004CrossRefGoogle Scholar
Rottenberg, X., Brebels, S., De Raedt, W., Nauwelaers, B. and Tilmans, H. A. C., “RF-power: Driver for electrostatic RF MEMS devices”, J. Micromech. Microeng., vol. 14, pp. S43–S48, 2004CrossRefGoogle Scholar
Dussopt, L. and Rebeiz, G., “Intermodulation distortion and power handling in RF MEMS switches, varactors and tunable filters”, IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1247–56, Apr. 2003CrossRefGoogle Scholar
Wang, Z., Jensen, B. D., Chow, L. L. W., Volakis, J. L., Saitou, K. and Kurabayashi, K., “Full-wave electromagnetic and thermal modeling for prediction of heat-dissipation-induced RF MEMS switch failure”, J. Micromech. Microeng., vol. 16, pp. 157–64, 2006CrossRefGoogle Scholar
Fillit, R., Ivira, B., Boussey, J., Fortunier, R. and Ancey, P., “Structural and thermal investigation for FBAR reliability in wireless application”, Proceedings of the 43rd Annual Reliability Physics Symposium, pp. 342–6, Apr. 2005
Coccetti, F., Ducarouge, B., Schied, E., Dubuc, D., Grenier, K. and Plana, R., “Thermal analysis of RF MEMS switches for power handling front-end”, 13th Gallium Arsenide and other Compound Semiconductors Application Symposium (GaAs’2005), Paris pp. 513–16, Oct. 2005
Cedip Infrared Systems,
Thiel, W., Tornquist, K., Reano, R. and Katehi, L. P. B., “A study of thermal effects in RF-MEM-switches using a time domain approach”, IEEE MTT-S, pp. 235–8, Jun. 2002.
Jensen, B. D., Saitou, K., Volakis, J. L. and Kurabayashi, K., “Fully integrated electrothermal multi-domain modeling of RF MEMS switches”, IEEE Microw. Compon. Lett., vol. 13, no. 9, pp. 364–6, Sep. 2003CrossRefGoogle Scholar
Tan, S. G., McErlean, E. P., Hong, J. S., Cui, Z., Wang, L., Greed, R. B. and Voyce, D. C., “Electromechanical modeling of high power RF MEMS switches with ohmic contact”, 13th Gallium Arsenide and other Compound Semiconductors Application Symposium (GaAs’2005), Paris, pp. 505–8, Oct. 2005
Ansoft corporation, “e-Physics Technical Note”,
Pillans, B., Kleber, J., Goldsmith, C. and Eberly, M., “RF power handling of capacitive RF MEMS devices”, IEEE MTT-S Int. Microw. Symp. Digest, Seattle, pp. 329–32, Jun. 2002
Ziaei, A., Dean, T. and Mancuso, Y., “Lifetime characterization of capacitive power RF MEMS switches”, 13th Gallium Arsenide and other Compound Semiconductors Application Symposium (GaAs’2005), Paris, pp. 509–12, Oct. 2005
Pacheco, S. P., Katehi, L. P. B. and Nguyen, C. T., “Design of low actuation voltage RF MEMS switch”, IEEE MTT-S Int. Microw. Symp. Digest, vol. 1, pp. 165–8, Jun. 2000Google Scholar
Grenier, K., Dubuc, D., Ducarouge, E., Conedera, T., Bourrier, D., Ongareau, E., Derderian, P. and Plana, R., “High power handling RF MEMS design and technology”, 18th International MEMS, Miami, pp. 155–8, Jan. 2005
Blondy, P., Crunteanu, A., Champeaux, C., Catherinot, A., Tristant, P., Vendier, O., Cazaux, J. L. and Marchand, L., “Dielectric less capacitive MEMS switches”, IEEE MTT-S Int. Microw. Symp. Digest, vol. 2, pp. 573–6, Jun. 2004Google Scholar
Grichener, A., Mercier, D. and Rebeiz, G., “High-power high-reliability high-Q switched RF MEMS capacitors”, IEEE MTT-S Int. Microw. Symp. Digest, Honolulu, pp. 31–34, Jun. 2007
Shim, E. S., Park, J., Choi, W., Kim, Y., Kwon, Y., No, J. S., Nam, S. and Cho, D. I., “Hot-switching test of non-contact type MEMS switch”, IEEE MTT-S Int. Microw. Symp. Digest, Honolulu, pp. 1809–12, Jun. 2007
Palego, C., Pothier, A., Gasseling, T., Crunteanu, A., Cibert, C., Champeaux, C., Tristant, P., Catherinot, A. and Blondy, P., “RF MEMS switched varactor for high power applications”, IEEE MTT-S, pp. 35–38, Jun. 2006
Lakshminarayanan, B. and Rebeiz, G., “High-power high-reliability sub-microsecond RF MEMS switched capacitors”, IEEE MTT-S Int. Microw. Symp. Digest, Honolulu, pp. 1801–4, Jun. 2007
Muldavin, J., Boisvert, R., Bozler, C., Rabe, S. and Keast, C., “Power handling and linearity of MEM capacitive series switches,” IEEE MTT-S Int. Microw. Symp. Digest, Philadelphia, pp. 1915–18, Jun. 2003
Stehle, A., Siegel, C., Ziegler, V., Schoenlinner, B., Prechtel, U., Thilmont, S., Seidel, H. and Schmid, U., “Low complexity RF-MEMS switch optimized for operation up to 120 °C”, Proceedings of the European Microwave Conference, Munich, pp. 1229–32, 2007
Martinez, J. D., Blondy, P., Pothier, A., Bouyge, D., Crunteanu, A. and Chatras, M., “Surface and bulk micromachined RF MEMS capacitive series switch for watt-range hot switching operation”, Proceedings of the 37th European Microwave Conference, Munich, pp. 1237–40, Oct. 2007
Lampen, J., Majumder, S., Morrison, R., Chaudhry, A. and Maciel, J. “A wafer-capped, high-lifetime ohmic MEMS RF switch”, Int. J. RF Microw., pp. 338–44, 2004
McKillop, J., Fowler, T., Goins, D. and Nelson, R., “Design, performance and qualification of a commercially available MEMS switch”, Proceedings of 36th European Microwave Conference, pp. 1399–1401, Oct. 2006
Balachandran, S., Kusterer, J., Connick, R., Weller, T. M., Maier, D., Dipalo, M. and Kohn, E., “Thermally actuated nanocrystalline diamond micro-bridges for microwave and high power RF applications”, IEEE MTT-S Int. Microw. Symp. Digest, Honolulu, pp. 367–70, Jun. 2007
Kusterer, J., Hernandez, F. J., Haroon, S., Schmid, P., Munding, A., Müller, R. and Kohn, E., “Bi-stable micro actuator based on stress engineered nano-diamond”, Diamond & Related Materials, Elsevier, vol. 15, pp. 773–6, 2006CrossRefGoogle Scholar
Choi, J.-Y., Ruan, J., Coccetti, F. and Lucyszyn, S., “Three-dimensional RF MEMS switch for power applications,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1031–9, Apr. 2009CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • High-power handling
    • By Fabio Coccetti, Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS), Robert Plana, Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS)
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • High-power handling
    • By Fabio Coccetti, Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS), Robert Plana, Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS)
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • High-power handling
    • By Fabio Coccetti, Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS), Robert Plana, Centre National de la Recherche Scientifique – Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS-LAAS)
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.009
Available formats
×