Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T23:24:31.514Z Has data issue: false hasContentIssue false

9 - Convection Effects in Low-Reynolds-Number Flows

Published online by Cambridge University Press:  05 June 2012

L. Gary Leal
Affiliation:
University of California, Santa Barbara
Get access

Summary

In the preceding chapters, we focused mainly on fluid dynamics problems, with only an occasional problem involving heat or mass transfer. In this chapter, we change our focus to problems of heat (or single-solute mass) transfer. Specifically, we address the problem of heat (or mass) transfer from a finite body to a surrounding fluid that is moving relative to the body. In this chapter, we concentrate on problems in which the fluid motion is viscous in nature, and thus is “known” (or can be calculated) from creeping-flow theory. Later, after we have considered flows at nonzero Reynolds number, we will also consider heat (or mass) transfer for this situation.

In all of the fluid mechanics problems that we have considered until now, the nonlinear inertia terms in the equations of motion were either identically zero or small compared with the viscous terms. We begin this chapter by considering the corresponding heat (or mass) transfer problem, in which the fluid motion is “slow” in a sense to be described shortly, so that convection effects are weak and the transport process is dominated by conduction. When convection terms in the thermal energy equation can be neglected altogether, the resulting pure conduction problem is mathematically and physically analogous to the creeping flows that we have been studying in the preceding two chapters. The transport of heat is purely “diffusive” in this limit, i.e., conduction, just as the transport of momentum (or vorticity) in a creeping flow is also “diffusive.”

Type
Chapter
Information
Advanced Transport Phenomena
Fluid Mechanics and Convective Transport Processes
, pp. 593 - 696
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×