Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T19:29:55.763Z Has data issue: false hasContentIssue false

4 - An Introduction to Asymptotic Approximations

Published online by Cambridge University Press:  05 June 2012

L. Gary Leal
Affiliation:
University of California, Santa Barbara
Get access

Summary

Although the full Navier–Stokes equations are nonlinear, we have studied a number of problems in Chap. 3 in which the flow was either unidirectional so that the nonlinear terms u · ∇u were identically equal to zero or else appeared only in an equation for the cross-stream pressure gradient, which was decoupled from the primary linear flow equation, as in the 1D analog of circular Couette flow. This class of flow problems is unusual in the sense that exact solutions could be obtained by use of standard methods of analysis for linear PDEs. In virtually all circumstances besides the special class of flows described in Chap. 3, we must utilize the original, nonlinear Navier–Stokes equations. In such cases, the analytic methods of the preceding chapter do not apply because they rely explicitly on the so-called superposition principle, according to which a sum of solutions of linear equations is still a solution. In fact, no generally applicable analytic method exists for the exact solution of nonlinear PDEs.

The question then is whether methods exist to achieve approximate solutions for such problems. In fluid mechanics and in convective transport problems there are three possible approaches to obtaining approximate results from the nonlinear Navier–Stokes equations and boundary conditions.

First, we may discretize the DEs and boundary conditions, using such formalisms as finite-difference, finite-element, or related approximations, and thus convert them to a large but finite set of nonlinear algebraic equations that is suitable for attack by means of numerical (or computational) methods.

Type
Chapter
Information
Advanced Transport Phenomena
Fluid Mechanics and Convective Transport Processes
, pp. 204 - 293
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×