Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-12T17:37:22.313Z Has data issue: false hasContentIssue false

11 - Trapped clouds at non-zero temperature

Published online by Cambridge University Press:  25 January 2011

C. J. Pethick
Affiliation:
Nordita and University of Copenhagen
H. Smith
Affiliation:
University of Copenhagen
Get access

Summary

In this chapter we consider selected topics in the theory of trapped gases at non-zero temperature when the effects of interactions are taken into account. The task is to extend the considerations of Chapters 8 and 10 to allow for the trapping potential. In Sec. 11.1 we begin by discussing energy scales, and then calculate the transition temperature and thermodynamic properties. We show that at temperatures of the order of Tc the effect of interactions on thermodynamic properties of clouds in a harmonic trap is determined by the dimensionless parameter N1/6a/ā. Here ā, which is defined in Eq. (6.24), is the geometric mean of the oscillator lengths for the three principal axes of the trap. Generally this quantity is small, and therefore under many circumstances the effects of interactions are small. At low temperatures, thermodynamic properties may be evaluated in terms of the spectrum of elementary excitations of the cloud, which we considered in Secs. 7.2, 7.3, and 8.2. At higher temperatures it is necessary to take into account thermal depletion of the condensate, and useful approximations for thermodynamic functions may be obtained using the Hartree–Fock theory as a starting point.

The remainder of the chapter is devoted to non-equilibrium phenomena. As we have seen in Secs. 10.3–10.5, two ingredients in the description of collective modes and other non-equilibrium properties of uniform gases are the two-component nature of condensed Bose systems, and collisions between excitations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×