Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-12T15:35:52.820Z Has data issue: false hasContentIssue false

17 - From atoms to molecules

Published online by Cambridge University Press:  25 January 2011

C. J. Pethick
Affiliation:
Nordita and University of Copenhagen
H. Smith
Affiliation:
University of Copenhagen
Get access

Summary

A new facet was added to the study of dilute gases by the production and subsequent Bose–Einstein condensation of diatomic molecules from a gas of fermionic atoms. Feshbach resonances which, as we have seen in Sec. 5.4, make it possible to tune the atom–atom interaction, play a crucial role in the experiments. At the magnetic field strength for which the binding energy of the molecule vanishes, the inverse of the scattering length, which determines the low-energy effective interaction between atoms, passes through zero. In the experiments to produce molecules, one starts with a mixture of two species of fermion, most commonly different hyperfine states of the same isotope, in a magnetic field of such a strength that the molecular state has an energy higher than that of two zero-momentum atoms in the open channel. The magnetic field is then altered to a value at which the molecular state is bound with respect to two atoms in the open channel, and in this process, many of the atoms combine to form molecules. These molecules have binding energies in the 10−9 eV range, and are thus extremely weakly bound by the standards of conventional molecular physics. In addition, they are very extended, with atomic separations as large as one micron. These molecules, being bosons, can undergo Bose–Einstein condensation, just as bosonic atoms do.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • From atoms to molecules
  • C. J. Pethick, H. Smith, University of Copenhagen
  • Book: Bose–Einstein Condensation in Dilute Gases
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802850.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • From atoms to molecules
  • C. J. Pethick, H. Smith, University of Copenhagen
  • Book: Bose–Einstein Condensation in Dilute Gases
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802850.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • From atoms to molecules
  • C. J. Pethick, H. Smith, University of Copenhagen
  • Book: Bose–Einstein Condensation in Dilute Gases
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802850.018
Available formats
×