Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T20:21:23.277Z Has data issue: false hasContentIssue false

5 - Molecular and genetic analysis of symbiosis expressed secondary metabolite genes from the mutualistic fungal endophytes Neotyphodium lolii and Epichloë festucae

from II - Bioactive molecules

Published online by Cambridge University Press:  05 October 2013

B. Scott
Affiliation:
Centre for Functional Genomics Institute of Molecular Biosciences and Institute of Fundamental Sciences Massey University Private Bag 11 222 Palmerston North New Zealand
C. A. Young
Affiliation:
Molecular Mycologist Forage Improvement Division The Samuel Roberts Noble Foundation, Inc. 2510 Sam Noble Pky Ardmore OK 73401 USA
A. Tanaka
Affiliation:
Institute of Molecular Biosciences Massey University Private Bag 11 222 Palmerston North New Zealand
E. J. Parker
Affiliation:
Institute of Fundamental Sciences Massey University Private Bag 11 222 Palmerston North New Zealand
G. D. Robson
Affiliation:
University of Manchester
Pieter van West
Affiliation:
University of Aberdeen
Geoffrey Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Epichloë endophytes (Epichloë/Neotyphodium species) are an important group of clavicipitaceous fungi that form symbiotic associations (symbiota) with temperate grasses of the Pooideae subfamily (Scott, 2001a; Schardl, Leuchtmann & Spiering, 2004). These biotrophic fungi systemically colonize the intercellular spaces of leaf primordia, leaf sheaths and culms of vegetative tissue and the inflorescence of reproductive tissues. The asexual Neotyphodium species have no external growth stage and consequently form symptomless associations with their grass host where they are vertically transmitted through the seed following colonization of the developing ovule. Most of the sexual Epichloë species are also transmitted vertically but because of their ability to form external stromata on inflorescence tissue, can also be transmitted horizontally (Leuchtmann & Schardl, 1998; Schardl & Leuchtmann, 1999). The mating system is heterothallic (outcrossing) and in nature is mediated by anthomyiid flies (Botanophila spp.), which transfer spermatia between stromata (Bultman et al., 1995; Bultman et al., 1998). Formation of perithecia and release of ascospores into the environment provides a source of vegetative hyphae that give rise to conidia that subsequently infect new hosts, probably by way of colonization of the stigma and style of the host inflorescence (Chung & Schardl, 1997).

Taxonomy of epichloë endophytes

At least nine different Epichloë species are recognized including E. typhina, a broad host range species (Schardl & Wilkinson, 2000) and E. festucae, a natural symbiont of Festuca spp. (Leuchtmann, Schardl & Siegel, 1994). E. festucae is also capable of forming compatible associations with perennial ryegrass, Lolium perenne (Christensen et al.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acklin, W., Weibel, F. & Arigoni, D. (1977). Zur biosynthese von paspalin und verwandten metaboliten aus Claviceps paspali. Chimia, 31, 63.Google Scholar
Arachevaleta, M., Bacon, C. W., Hoveland, C. S. & Radcliffe, D. E. (1989). Effect of the tall fescue endophyte on plant response to environmental stress. Agronomy Journal, 81, 83–90.CrossRefGoogle Scholar
Bacon, C. W., Porter, J. K., Robbins, J. D. & Luttrell, E. S. (1977). Epichloë typhina from toxic tall fescue grasses. Applied and Environmental Microbiology, 34, 576–81.Google ScholarPubMed
Blankenship, J. D., Spiering, M. J., Wilkinson, H. H., Fannin, F. F., Bush, L. P. & Schardl, C. L. (2001). Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry, 58, 395–401.CrossRefGoogle ScholarPubMed
Bouton, J. & Easton, S. (2005). In Neotyphodium in Cool-Season Grasses, eds. Roberts, C. A., West, C. P. & Spiers, D. E.. Oxford: Blackwell Publishing Ltd, pp. 327–40.CrossRefGoogle Scholar
Bultman, T. L., White, J. F. Jr., Bowdish, T. I. & Welch, A. M. (1998). A new kind of mutualism between fungi and insects. Mycological Research, 102, 235–8.CrossRefGoogle Scholar
Bultman, T. L., White, J. F. Jr., Bowdish, T. I., Welch, A. M. & Johnston, J. (1995). Mutualistic transfer of Epichloë spermatia by Phorbia flies. Mycologia, 87, 182–9.CrossRefGoogle Scholar
Bush, L. P., Wilkinson, H. H. & Schardl, C. L. (1997). Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology, 114, 1–7.CrossRefGoogle ScholarPubMed
Byrne, K. M., Smith, S. K. & Ondeyka, J. G. (2002). Biosynthesis of nodulisporic acid A: precursor studies. Journal of the American Chemical Society, 124, 7055–60.CrossRefGoogle ScholarPubMed
Cambareri, E. B., Jensen, B. C., Schabtach, E. & Selker, E. U. (1989). Repeat-induced G-C to A-T mutations in Neurospora. Science, 244, 1571–5.CrossRefGoogle Scholar
Christensen, M. J., Ball, O. J.-P., Bennett, R. J. & Schardl, C. L. (1997). Fungal and host genotype effects on compatibility and vascular colonization by Epichloë festucae. Mycological Research, 101, 493–501.CrossRefGoogle Scholar
Christensen, M. J., Leuchtmann, A., Rowan, D. D. & Tapper, B. A. (1993). Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis) and perennial rye-grass (Lolium perenne). Mycological Research, 97, 1083–92.CrossRefGoogle Scholar
Chung, K.-R. & Schardl, C. L. (1997). Sexual cycle and horizontal transmission of the grass symbiont, Epichloë typina. Mycological Research, 101, 295–301.CrossRefGoogle Scholar
Clay, K. & Schardl, C. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 160, S99–S127.CrossRefGoogle ScholarPubMed
Craven, K. D., Blankenship, J. D., Leuchtmann, A., Hignight, K. & Schardl, C. L. (2001). Hybrid fungal endophytes symbiotic with the grass Lolium pratense. Sydowia, 53, 44–73.Google Scholar
Jesus, A. E., Gorst-Allman, C. P., Steyn, P. S., Heerden, F. R., Vleggar, R., Wessels, P. L. & Hull, W. E. (1983). Tremorgenic mycotoxins from Penicillium crustosum. Biosynthesis of Penitrem A. Journal of the Chemical Society Perkin Transactions, 1863–8.CrossRefGoogle Scholar
Fletcher, L. (2005). In Neotyphodium in Cool-Season Grasses, eds. Roberts, C. A., West, C. P. & Spiers, D. E.. Oxford: Blackwell Publishing Ltd, pp. 229–41.CrossRefGoogle Scholar
Fletcher, L. R. & Harvey, I. C. (1981). An association of a Lolium endophyte with ryegrass staggers. New Zealand Veterinary Journal, 29, 185–6.CrossRefGoogle ScholarPubMed
Fueki, S., Tokiwano, T., Toshima, H. & Oikawa, H. (2004). Biosynthesis of indole diterpenes, emindole, and paxilline: involvement of a common intermediate. Organic Letters, 6, 2697–700.CrossRefGoogle ScholarPubMed
Gallagher, R. T., White, E. P. & Mortimer, P. H. (1981). Ryegrass staggers: isolation of potent neurotoxins lolitrem A and lolitrem B from staggers-producing pastures. New Zealand Veterinary Journal, 29, 189–90.CrossRefGoogle ScholarPubMed
Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M. S., Nene, V. & Shallom, S. J. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498–511.CrossRefGoogle ScholarPubMed
Gatenby, W. A., Munday-Finch, S. C., Wilkins, A. L. & Miles, C. O. (1999). Terpendole M, a novel indole-diterpenoid isolated from Lolium perenne infected with the endophytic fungus Neotyphodium lolii. Journal of Agricultural and Food Chemistry, 47, 1092–7.CrossRefGoogle ScholarPubMed
Gwinn, K. D. & Gavin, A. M. (1992). Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Disease, 76, 911–14.CrossRefGoogle Scholar
Hill, N. S., Stringer, W. C., Rottinghaus, G. E., Belesky, D. P., Parrott, W. A. & Pope, D. D. (1990). Growth, morphological, and chemical component responses of tall fescue to Acremonium coenophialum. Crop Science, 30, 156–61.CrossRefGoogle Scholar
Kimmons, C. A., Gwinn, K. D. & Bernard, E. C. (1990). Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Disease, 74, 757–61.CrossRefGoogle Scholar
Knaus, H.-G., McManus, O. B., Lee, S. H., Schmalhofer, W. A., Garcia-Calvo, M., Helms, L. M. H., Sanchez, M., Giangiacomo, K., Reuben, J. P., Smith, A. B., Kaczorowski, G. J. & Garcia, M. L. (1994). Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated channels. Biochemistry, 33, 5819–28.CrossRefGoogle Scholar
Kuldau, G. A., Tsai, H.-F. & Schardl, C. L. (1999). Genome sizes of Epichloë species and anamorphic hybrids. Mycologia, 91, 776–82.CrossRefGoogle Scholar
Lane, G. A., Christensen, M. J. & Miles, C. O. (2000) In Microbial Endophytes, eds. Bacon, C. W. & White, J. F. J.. New York: Marcel Dekker, pp. 341–88.Google Scholar
Laws, I. & Mantle, P. G. (1989). Experimental constraints in the study of the biosynthesis of indole alkaloids in fungi. Journal of General Microbiology, 135, 2679–92.Google Scholar
Lee, B. N., Kroken, S., Chou, D. Y., Robbertse, B., Yoder, O. C. & Turgeon, B. G. (2005). Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryotic Cell, 4, 545–55.CrossRefGoogle ScholarPubMed
Leuchtmann, A. & Schardl, C. L. (1998). Mating compatibility and phylogenetic relationships among two new species of Epichloë and other congeneric European species. Mycological Research, 102, 1169–82.CrossRefGoogle Scholar
Leuchtmann, A., Schardl, C. L. & Siegel, M. R. (1994). Sexual compatibility and taxonomy of a new species of Epichloë symbiotic with fine fescue grasses. Mycologia, 86, 802–12.CrossRefGoogle Scholar
Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. (1997). Modular peptide synthetases involved in nonribosomal peptide synthesis. Chemical Reviews, 97, 2651–73.CrossRefGoogle ScholarPubMed
McMillan, L. K., Carr, R. L., Young, C. A., Astin, J. W., Lowe, R. G. T., Parker, E. J., Jameson, G. B., Finch, S. C., Miles, C. O., McManus, O. B., Schmalhofer, W. A., Garcia, M. L., Kaczorowski, G. J., Goetz, M. A., Tkacz, J. S. & Scott, B. (2003). Molecular analysis of two cytochrome P450 monooxygenase genes required for paxilline biosynthesis in Penicillium paxilli and effects of paxilline intermediates on mammalian maxi-K ion channels. Molecular Genetics and Genomics, 270, 9–23.CrossRefGoogle ScholarPubMed
Miles, C. O., Munday, S. C., Wilkins, A. L., Ede, R. M. & Towers, N. R. (1994). Large-scale isolation of lolitrem B and structure determination of lolitrem E. Journal of Agriculture and Food Chemistry, 42, 1488–92.CrossRefGoogle Scholar
Miles, C. O., Wilkins, A. L., Gallagher, R. T., Hawkes, A. D., Munday, S. C. & Towers, N. R. (1992). Synthesis and tremorgenicity of paxitrols and lolitriol: possible biosynthetic precursors of lolitrem B. Journal of Agriculture and Food Chemistry, 40, 234–8.CrossRefGoogle Scholar
Moon, C. D., Craven, K. D., Leuchtmann, A., Clement, S. L. & Schardl, C. L. (2004). Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Molecular Ecology, 13, 1455–67.CrossRefGoogle ScholarPubMed
Moon, C. D., Scott, B., Schardl, C. L. & Christensen, M. J. (2000). The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia, 92, 1103–18.CrossRefGoogle Scholar
Munday-Finch, S. C., Miles, C. O., Wilkins, A. L. & Hawkes, A. D. (1995). Isolation and structure elucidation of lolitrem A, a tremorgenic mycotoxin from perennial ryegrass infected with Acremonium lolii. Journal of Agriculture and Food Chemistry, 43, 1283–8.CrossRefGoogle Scholar
Munday-Finch, S. C., Wilkins, A. L. & Miles, C. O. (1996a). Isolation of paspaline B, an indole-diterpenoid from Penicillium paxilli. Phytochemisty, 41, 327–32.CrossRefGoogle Scholar
Munday-Finch, S. C., Wilkins, A. L. & Miles, C. O. (1998). Isolation of lolicine A, lolicine B, lolitriol, and lolitrem N from Lolium perenne infected with Neotyphodium lolii and evidence for the natural occurrence of 31-epilolitrem N and 31-epilolitrem F. Journal of Agricultural and Food Chemistry, 46, 590–8.CrossRefGoogle ScholarPubMed
Munday-Finch, S. C., Wilkins, A. L., Miles, C. O., Ede, R. M. & Thomson, R. A. (1996b). Structure elucidation of Lolitrem F, a naturally occurring stereoisomer of the tremorgenic mycotoxin Lolitrem B, isolated from Lolium perenne infected with Acremonium lolii. Journal of Agricultural and Food Chemistry, 44, 2782–8.CrossRefGoogle Scholar
Munday-Finch, S. C., Wilkins, A. L., Miles, C. O., Tomoda, H. & Omura, S. (1997). Isolation and structure elucidation of lolilline, a possible biosynthetic precursor of the lolitrem family of tremorgenic mycotoxins. Journal of Agricultural and Food Chemistry, 45, 199–204.CrossRefGoogle Scholar
Panaccione, D. G. (1996). Multiple families of peptide synthetase genes from ergopeptine-producing fungi. Mycological Research, 100, 429–36.CrossRefGoogle Scholar
Panaccione, D. G., Johnson, R. D., Wang, J., Young, C. A., Damrongkool, P., Scott, B. & Schardl, C. L. (2001). Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proceedings of the National Academy of Sciences USA, 98, 12820–5.CrossRefGoogle ScholarPubMed
Parker, E. J. & Scott, D. B. (2004) In Handbook of Industrial Mycology, Chapter 14, ed. An, Z.. New York: Marcel Dekker, pp. 405–26.CrossRefGoogle Scholar
Rojas, M. C., Hedden, P., Gaskin, P. & Tudzynski, B. (2001). The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proceedings of the National Academy of Sciences USA, 98, 5838–43.CrossRefGoogle ScholarPubMed
Rowan, D. D. (1993) In Agriculture, Ecosystems and Environment, Vol. 44. Amsterdam: Elsevier Science Publishers B.V., pp. 103–22.Google Scholar
Rowan, D. D. & Gaynor, D. L. (1986). Isolation of feeding deterrents against stem weevil from ryegrass infected with the endophyte Acremonium loliae. Journal of Chemical Ecology, 12, 647–58.CrossRefGoogle ScholarPubMed
Schardl, C. L. & Leuchtmann, A. (1999). Three new species of Epichloë symbiotic with North American grasses. Mycologia, 91, 95–107.CrossRefGoogle Scholar
Schardl, C. L., Leuchtmann, A. & Spiering, M. J. (2004). Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology, 55, 315–40.CrossRefGoogle ScholarPubMed
Schardl, C. L., Leuchtmann, A., Tsai, H.-F., Collett, M. A., Watt, D. M. & Scott, D. B. (1994). Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics, 136, 1307–17.Google ScholarPubMed
Schardl, C. L. & Wilkinson, H. H. (2000). In Microbial Endophytes, eds. Bacon, C. W. & White, J. F. Jr. New York: Marcel Dekker, Inc., pp. 63–83.Google Scholar
Scott, B. (2001a). Epichloë endophytes: symbionts of grasses. Current Opinion in Microbiology, 4, 393–8.CrossRefGoogle Scholar
Scott, B. (2001b). In Molecular Breeding of Forage Crops, ed. Spangenberg, G.. Dordrecht: Kluwer Academic Publishers, pp. 261–74.CrossRefGoogle Scholar
Scott, B. (2004). In Molecular Breeding of Forage and Turf. Proceedings of the 3rd International Symposium on Molecular Breeding of Forage and Turf, Dallas, Texas, and Ardmore, Oaklahoma, USA. May 18–22, 2003., Vol. 11, eds. Hopkins, A., Wang, Z.-Y., Mian, R., Sledge, M. & Barker, R. E.. Dordrecht: Kluwer Academic, pp. 133–44.Google Scholar
Scott, B. & Young, C. (2003). In Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural Impacts, eds. White, J. F. Jnr., Bacon, C. W., Hywel-Jones, N. L. & Spatafora, J. W.. New York: Marcel Dekker Inc., pp. 425–43.CrossRefGoogle Scholar
Scott, B., Young, C., Tanaka, A., Christensen, M., Tapper, B. & Bryan, G. (2005). In Neotyphodium in Cool-Season Grasses, eds. Roberts, C. A., West, C. P. & Spiers, D. E.. Oxford: Blackwell Publishing Ltd, pp. 93–101.CrossRefGoogle Scholar
Selala, M. I., Laekeman, G. M., Loenders, B., Masuka, A., Herman, A. G. & Schepens, P. (1991). In vitro effects of tremorgenic mycotoxins. Journal of Natural Products, 54, 207–12.CrossRefGoogle ScholarPubMed
Selker, E. U., Cambareri, E. B., Jensen, B. C. & Haack, K. R. (1987). Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell, 51, 741–52.CrossRefGoogle ScholarPubMed
Siegel, M. R., Latch, G. C. M., Bush, L. P., Fannin, F. F., Rowan, D. D., Tapper, B. A., Bacon, C. W. & Johnson, M. C. (1990). Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. Journal of Chemical Ecology, 16, 3301–15.CrossRefGoogle ScholarPubMed
Socic, H. & Gaberc-Porekar, V. (1992). In Fungal Biotechnology, Vol. 4, eds. Arora, D. K., Elander, R. P. & Mukerji, K. G.. New York: Marcel Dekker, pp. 123–55.Google Scholar
Steyn, P. S. & Vleggaar, R. (1985). Tremorgenic mycotoxins. Progress in the Chemistry of Organic Natural Products, 48, 1–80.Google ScholarPubMed
Tanaka, A., Tapper, B. A., Popay, A. J., Parker, E. J. & Scott, B. (2005). A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Molecular Microbiology, 57, 1036–50.CrossRefGoogle ScholarPubMed
Tapper, B. A. & Latch, G. C. M. (1999). In Ryegrass Endophyte: An Essential New Zealand Symbiosis. Grasslands Research and Practice Series No 7, eds. Woodfield, D. R. & Matthew, C.. Napier: New Zealand Grassland Association, pp. 107–11.Google Scholar
Tkacz, J. S. (2000). In Microbial Endophytes, eds. Bacon, C. W. & White, J. J. F.. New York: Marcel Dekker, Inc.Google Scholar
Tsai, H.-F., Liu, J.-S., Staben, C., Christensen, M. J., Latch, G. C. M., Siegel, M. R. & Schardl, C. L. (1994). Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proceedings of the National Academy of Sciences USA, 91, 2542–6.CrossRefGoogle ScholarPubMed
Tudzynski, B., Hedden, P., Carrera, E. & Gaskin, P. (2001). The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Applied and Environmental Microbiology, 67, 3514–22.CrossRefGoogle ScholarPubMed
Tudzynski, B. & Hölter, K. (1998). Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genetics and Biology, 25, 157–70.CrossRefGoogle ScholarPubMed
Tudzynski, B., Mihlan, M., Rojas, M. C., Linnemannstoens, P., Gaskin, P. & Hedden, P. (2003). Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase respectively. Journal of Biological Chemistry, 278, 28635–43.CrossRefGoogle ScholarPubMed
Tudzynski, B., Rojas, M. C., Gaskin, P. & Hedden, P. (2002). The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase. Journal of Biological Chemistry, 277, 21246–53.CrossRefGoogle ScholarPubMed
Döhren, H., Keller, U., Vater, J. & Zocher, R. (1997). Multifunctional peptide synthetases. Chemical Reviews, 97, 2675–705.CrossRefGoogle Scholar
West, C. P., Izekor, E., Oosterhuis, D. M. & Robbins, R. T. (1988). The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant and Soil, 112, 3–6.CrossRefGoogle Scholar
Yoder, O. C. & Turgeon, B. G. (2001). Fungal genomics and pathogenicity. Current Opinion in Plant Biology, 4, 315–21.CrossRefGoogle ScholarPubMed
Young, C., Itoh, Y., Johnson, R., Garthwaite, I., Miles, C. O., Munday-Finch, S. C. & Scott, B. (1998). Paxilline-negative mutants of Penicillium paxilli generated by heterologous and homologous plasmid integration. Current Genetics, 33, 368–77.CrossRefGoogle ScholarPubMed
Young, C. A., Bryant, M. K., Christensen, M. J., Tapper, B. A., Bryan, G. T. & Scott, B. (2005). Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Molecular Genetics and Genomics, 274, 13–29.CrossRefGoogle ScholarPubMed
Young, C. A., McMillan, L., Telfer, E. & Scott, B. (2001). Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Molecular Microbiology, 39, 754–64.CrossRefGoogle ScholarPubMed
Zhang, S., Monahan, B. J., Tkacz, J. S. & Scott, B. (2004). An indole-diterpene gene cluster from Aspergillus flavus. Applied and Environmental Microbiology, 70, 6875–83.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×